LEI Lin, ZHANG Longsheng, XIONG Wei, XIA Weiwei. Multi-Stage Fracturing Technology of Normally Pressured Shale Gas in Horizontal Wells in the Wulong Block[J]. Petroleum Drilling Techniques, 2019, 47(1): 76-82. DOI: 10.11911/syztjs.2018129
Citation: LEI Lin, ZHANG Longsheng, XIONG Wei, XIA Weiwei. Multi-Stage Fracturing Technology of Normally Pressured Shale Gas in Horizontal Wells in the Wulong Block[J]. Petroleum Drilling Techniques, 2019, 47(1): 76-82. DOI: 10.11911/syztjs.2018129

Multi-Stage Fracturing Technology of Normally Pressured Shale Gas in Horizontal Wells in the Wulong Block

More Information
  • Received Date: March 11, 2018
  • Revised Date: July 15, 2018
  • Available Online: September 08, 2022
  • In-situ horizontal stress differences within shale gas reservoirs in the Wulong Block, southeast Chongqing are large.It is difficult to create complex volumetric fractures for high-angle and bedding fractures, to open low-angle fractures, and to change the fracture extention orientation.In addition, in-situ stress differences make economic development of normal pressure gas reservoir very difficult.Based on the analysis of technical difficulties of normal pressure shale gas in the Wulong Block, it is planned to increase the complexity of the fractures and so as to increase stimulated reservoir volume under high stress difference taking slick water as the fracturing fluid and perforation cluster spacing, perforation cluster length optimization as well as inter-cluster temporary plugging.To improve fractures conductivity and ensure that the fractures extend sufficiently in shale gas reservoirs, a multi-stage fracturing technology suitable for normal pressure shale gas in horizontal well of the Wulong Block has been developed by using continuous gravel filling and optimizing fracturing scale.The technology was successfully applied in Well Longye 2HF and it resulted in gas production of 9.4×104 m3/d.Based on the fracturing data analysis of Well Longye 2HF, the application of this technology can improve fracture complexity, form network fractures, and increase individual-well production of normal pressure shale gas well, and realize economic development in normal pressure shale gas.

  • [1]
    方志雄, 何希鹏.渝东南武隆向斜常压页岩气形成与演化[J].石油与天然气地质, 2016, 37(6):819-827. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201606003

    FANG Zhixiong, HE Xipeng.Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline, Southeast Chongqing, China[J].Oil &Gas Geology, 2016, 37(6):819-827. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201606003
    [2]
    何希鹏, 高玉巧, 唐显春, 等.渝东南地区常压页岩气富集主控因素分析[J].天然气地球科学, 2017, 28(4):654-664. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201704017

    HE Xipeng, GAO Yuqiao, TANG Xianchun, et al.Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J].Natural Gas Geoscicence, 2017, 28(4):654-664. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201704017
    [3]
    JOHN V, MARK D Z.Hydraulic fracturing, microseismic magnitudes, and stress evolution in the Barnett Shale, Texas, USA[R].SPE 140507, 2011.
    [4]
    ISHANK G, CHANDRN R, CARL H S, et al.Rock typing in Eagle Ford, Barnett, and Woodford Formations[R].SPE 189968, 2018.
    [5]
    朱彤, 曹艳, 张快.美国典型页岩气藏类型及勘探开发启示[J].石油实验地质, 2014, 36(6):718-724. http://d.old.wanfangdata.com.cn/Periodical/sysydz201406009

    ZHU Tong, CAO Yan, ZHANG Kuai.Typical shale gas reservoirs in USA and enlightenment to exploration and development[J].Petroleum Geology & Experiment, 2014, 36(6):718-724. http://d.old.wanfangdata.com.cn/Periodical/sysydz201406009
    [6]
    濮御, 王秀宇, 杨胜来.利用NMRI技术研究致密储层静态渗吸机理[J].石油化工高等学校学报, 2017, 30(1):45-48. doi: 10.3969/j.issn.1006-396X.2017.01.010

    PU Yu, WANG Xiuyu, YANG Shenglai.Research on spontaneous imbibition mechanism of tight oil reservoirs using NMRI method[J].Journal of Petrochemical Universities, 2017, 30(1):45-48. doi: 10.3969/j.issn.1006-396X.2017.01.010
    [7]
    秦积舜, 李爱芬.油层物理学[M].东营:石油大学出版社, 2001.

    QIN Jishun, LI Aifen.Reservoir physics[M].Dongying:Petroleum University Press, 2001.
    [8]
    蔡建超, 郁伯铭.多孔介质自发渗吸研究进展[J].力学进展, 2012, 42(6):735-754. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201206458587

    CAI Jianchao, YU Boming.Advances in studies of spontaneous imbibition in porous media[J].Advances in Mechanics, 2012, 42(6):735-754. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201206458587
    [9]
    王海涛, 蒋廷学, 卞晓冰, 等.深层页岩压裂工艺优化与现场试验[J].石油钻探技术, 2016, 44(2):76-81. doi: 10.11911/syztjs.201602013

    WANG Haitao, JIANG Tingxue, BIAN Xiaobing, et al.Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs[J].Petroleum Drilling Techniques, 2016, 44(2):76-81. doi: 10.11911/syztjs.201602013
    [10]
    LOPEZ B, AGUILERA R.Physics-based approach for shale gas numerical simulation: quintuple porosity and gas diffusion from solid kerogen[R].SPE 175115, 2015.
    [11]
    NEGARA A, SALAMA A, SUN S, et al.Numerical simulation of natural gas flow in anisotropic shale reservoirs[R].SPE 177481, 2016.
    [12]
    BOSTROM B.Development of a geomechanical reservoir modelling workflow and simulations[R].SPE 124307, 2009.
    [13]
    TAKAHASHI S, KOVSCEK A R.Wet ability estimation of low-permeability, siliceous shale using surface force[J].Journal of Petroleum Science and Engineering, 2010, 75(1/2):33-43.
    [14]
    曾义金, 陈作, 卞晓冰.川东南深层页岩气分段压裂技术的突破与认识[J].天然气工业, 2016, 36(1):61-67. http://d.old.wanfangdata.com.cn/Periodical/trqgy201601007

    ZENG Yijin, CHEN Zuo, BIAN Xiaobing.Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J].Natural Gas Industry, 2016, 36(1):61-67. http://d.old.wanfangdata.com.cn/Periodical/trqgy201601007
    [15]
    李勇明, 许文俊, 赵金洲, 等.页岩储层中水力裂缝穿过天然裂缝的判定准则[J].天然气工业, 2015, 35(7):49-54. doi: 10.3787/j.issn.1000-0976.2015.07.007

    LI Yongming, XU Wenjun, ZHAO Jinzhou, et al.Criteria for judging whether hydraulic fractures cross nature fractures in shale reservoirs[J].Natural Gas Industry, 2015, 35(7):49-54. doi: 10.3787/j.issn.1000-0976.2015.07.007
    [16]
    蒋廷学, 贾长贵, 王海涛, 等.页岩气网络压裂设计方法研究[J].石油钻探技术, 2011, 39(3):36-40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    JIANG Tingxue, JIA Changgui, WANG Haitao, et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques, 2011, 39(3):36-40. doi: 10.3969/j.issn.1001-0890.2011.03.006
    [17]
    张士诚, 王世贵, 张国良, 等.限流法压裂射孔方案优化设计[J].石油钻采工艺, 2000, 22(2):60-63. doi: 10.3969/j.issn.1000-7393.2000.02.016

    ZHANG Shicheng, WANG Shigui, ZHANG Guoliang, et al.Perforation optimization design for operation of limited entry fracturing technology[J].Oil Drilling & Production Technology, 2000, 22(2):60-63. doi: 10.3969/j.issn.1000-7393.2000.02.016
    [18]
    周再乐, 张广清, 熊文学, 等.水平井限流压裂射孔参数优化[J].断块油气田, 2015, 22(3):374-378. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201503023

    ZHOU Zaile, ZHANG Guangqing, XIONG Wenxue, et al.Perforating parameter optimization of limit entry fracturing for horizontal wells[J].Fault-Block Oil & Gas Field, 2015, 22(3):374-378. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201503023
  • Related Articles

    [1]LI Sheng, XIA Boru, LIN Yongxue, WANG Xianguang, HAN Xiuzhen. Oil-Based Mud with Low Oil/Water Ratio for Well Jiaoye 54-3HF[J]. Petroleum Drilling Techniques, 2017, 45(1): 51-56. DOI: 10.11911/syztjs.201701009
    [2]WANG Haitao, JIANG Tingxue, BIAN Xiaobing, DUAN Hua. Optimization and Field Application of Hydraulic Fracturing Techniques in Deep Shale Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76-81. DOI: 10.11911/syztjs.201602013
    [3]LONG Zhiping, WANG Yanqi, ZHOU Yucang. Key Drilling Technologies for Shale Gas Well Longye 1HF[J]. Petroleum Drilling Techniques, 2016, 44(2): 16-21. DOI: 10.11911/syztjs.201602003
    [4]He Long, Hu Daliang, Zhu Hong. Drilling Technologies for Shale Gas Horizontal Well Dingye 2HF[J]. Petroleum Drilling Techniques, 2014, 42(4): 125-130. DOI: 10.3969/j.issn.1001-0890.2014.04.024
    [5]Jia Changgui, Lu Baoping, Jiang Tingxue, Li Zhenxiang. Multi-Stage Horizontal Well Fracturing Technology in Deep Shale Gas Well DY2HF[J]. Petroleum Drilling Techniques, 2014, 42(2): 85-90. DOI: 10.3969/j.issn.1001-0890.2014.02.017
    [6]Sun Kunzhong, He Jibiao, Zeng Penghui, Shen Binliang, Gu Jun. Application of Mud Cake Curing Agent in Well Yuanye HF-1[J]. Petroleum Drilling Techniques, 2013, 41(5): 41-45. DOI: 10.3969/j.issn.1001-0890.2013.05.008
    [7]Wang Xianguang, Li Xiong, Lin Yongxue. Research and Application of High Performance Oil Base Drilling Fluid for Shale Horizontal Wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 17-22. DOI: 10.3969/j.issn.1001-0890.2013.02.004
    [8]Yan Lianguo, Zhou Yucang. Horizontal Well Cementing Technology of Shale Gas Well Pengye HF-1[J]. Petroleum Drilling Techniques, 2012, 40(4): 47-51. DOI: 10.3969/j.issn.1001-0890.2012.04.010
    [9]He Zhenkui. Oil Base Drilling Fluid Technology Applied in Well Biye HF 1[J]. Petroleum Drilling Techniques, 2012, 40(4): 32-37. DOI: 10.3969/j.issn.1001-0890.2012.04.007
    [10]Jiang Zhenghua, Tong Shengbao, Ding Jinhe. Key Technologies Adopted for Shale Gas Horizontal Well Pengye HF-1[J]. Petroleum Drilling Techniques, 2012, 40(4): 28-31. DOI: 10.3969/j.issn.1001-0890.2012.04.006
  • Cited by

    Periodical cited type(23)

    1. 汤继周,张卓,张丰收,李玉伟,刘堂晏. 陆相页岩储层水平井无限级压裂工艺优化. 岩石力学与工程学报. 2023(09): 2096-2108 .
    2. 刘福建. 柔性暂堵绳结在套变井压裂中试验应用. 内蒙古石油化工. 2023(08): 18-21 .
    3. 张磊,刘安邦,钟亚军,张永飞,王建平. 大规模滑溜水压裂参数优化研究与应用. 非常规油气. 2022(02): 112-118 .
    4. 张怀钰. 水平井压裂技术与工艺现状及发展. 化学工程与装备. 2022(02): 94+91 .
    5. 陈伟. 水平井分段多簇压裂技术影响因素. 化学工程与装备. 2022(06): 78-79 .
    6. 王绍红. 浅析页岩气水平井分段压裂技术. 中国石油和化工标准与质量. 2021(01): 184-186 .
    7. 夏海帮,包凯,王睿. 页岩气井用新型无限级全通径滑套压裂技术先导试验. 油气藏评价与开发. 2021(03): 390-394 .
    8. 赵旭亮,刘永莉,贡军民. 分段压裂用可溶桥塞研究及试验. 辽宁石油化工大学学报. 2021(03): 57-61 .
    9. 张莉娜,刘欣,张耀祖. 基于正交试验设计的页岩气藏压裂敏感性分析. 非常规油气. 2021(05): 77-86 .
    10. 黄婷,苏良银,达引朋,杨立安. 超低渗透油藏水平井储能压裂机理研究与现场试验. 石油钻探技术. 2020(01): 80-84 . 本站查看
    11. 张峰,荣莽,许明标. 页岩气水平井暂堵球运移坐封机理. 科学技术与工程. 2020(06): 2202-2208 .
    12. 徐平. 浅议水平井压裂工艺技术现状及发展趋势. 中国石油和化工标准与质量. 2020(04): 195-196 .
    13. 刘学伟. 页岩储层水力压裂支撑裂缝导流能力影响因素. 断块油气田. 2020(03): 394-398 .
    14. 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验. 石油钻探技术. 2020(03): 90-96 . 本站查看
    15. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 .
    16. 房娜,姜光宏,程奇,李广龙,王双龙. 裂缝性油藏不同见水模式下的注水优化. 断块油气田. 2020(05): 633-637 .
    17. 任佳伟,王贤君,张先敏,王维. 大庆致密油藏水平井重复压裂及裂缝参数优化模拟. 断块油气田. 2020(05): 638-642 .
    18. 蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 .
    19. 殷世巍. 页岩气高效压裂工艺技术优化研究. 辽宁化工. 2020(10): 1330-1332 .
    20. 沈云琦,李凤霞,张岩,刘长印,张旭辉. 复杂裂缝网络内支撑剂运移及铺置规律分析. 油气地质与采收率. 2020(05): 134-142 .
    21. 苏良银,常笃,杨海恩,段鹏辉,薛小佳,白建文. 低渗透油藏侧钻水平井小井眼分段多簇压裂技术. 石油钻探技术. 2020(06): 94-98 . 本站查看
    22. 李平,樊平天,郝世彦,郑忠文,余维初. 大液量大排量低砂比滑溜水分段压裂工艺应用实践. 石油钻采工艺. 2019(04): 534-540 .
    23. 黎伟,夏杨,陈曦. RFID智能滑套设计与试验研究. 石油钻探技术. 2019(06): 83-88 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (9098) PDF downloads (112) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return