Citation: | LI Zhaoying, YANG Xu, YANG Jie, et al. Synthesis and property evaluation of a amphoteric polymer fracturing fluid thickener [J]. Petroleum Drilling Techniques,2023, 51(2):109-115. DOI: 10.11911/syztjs.2023044 |
At present, most of the polymer thickeners used in water-based fracturing fluid both in China and abroad have poor salt resistance. Therefore, amphoteric polyacrylamide (AMPAM) was synthesized by introducing anionic monomer (2-acrylamido-2-methylpropane sulfonic acid (AMPS)) and cationic monomer (methacryloyloxyethyl trimethyl ammonium chloride (DMC)) into the acrylamide (AM) chain. The effects of the total mass fraction of monomers, mass ratio of monomers, initiator dosage, and pH value on the relative molecular mass and thickening property of AMPAM were studied, and the optimal conditions for AMPAM synthesis were determined. In addition, the salt resistance, solubility, and thickening property of AMPAM, as well as the performance of AMPAM fracturing fluid prepared with NaCl solution with salinity of 30 g/L were evaluated. The results show that the apparent viscosity of AMPAM solution of 0.5% prepared with high-salinity brine was 20 mPa·s, and the AMPAM was completely dissolved within 20 min when its dosage did not exceed 0.6%. The temperature and shear resistance, as well as sand-carrying and gel-breaking properties of AMPAM fracturing fluid prepared with brine meet the general technical requirements of water-based fracturing fluid. The results show that AMPAM has excellent salt resistance and can be used as a thickener for brine polymer fracturing fluid.
[1] |
何春明,陈红军,刘超,等. 高温合成聚合物压裂液体系研究[J]. 油田化学,2012,29(1):65–68. doi: 10.19346/j.cnki.1000-4092.2012.01.015
HE Chunming, CHEN Hongjun, LIU Chao, et al. Study of high temperature synthetic polymer fracturing fluid[J]. Oilfield Chemistry, 2012, 29(1): 65–68. doi: 10.19346/j.cnki.1000-4092.2012.01.015
|
[2] |
陈大钧, 陈馥. 油气田应用化学[M]. 北京: 石油工业出版社, 2006.
CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fields [M]. Beijing: Petroleum Industry Press, 2006.
|
[3] |
程代淑,董丽,刘占国. HYY-98型油基冻胶压裂液及其应用[J]. 石油钻采工艺,2000,22(4):81–82. doi: 10.13639/j.odpt.2000.04.032
CHENG Daishu, DONG Li, LIU Zhanguo. HYY-98 oil-based gel fracturing fluid and its application[J]. Oil Drilling & Production Technology, 2000, 22(4): 81–82. doi: 10.13639/j.odpt.2000.04.032
|
[4] |
李小刚,宋峙潮,宋瑞,等. 泡沫压裂液研究进展与展望[J]. 应用化工,2019,48(2):412–417. doi: 10.3969/j.issn.1671-3206.2019.02.039
LI Xiaogang, SONG Zhichao, SONG Rui, et al. Research progresses and expectation on foam fracture fluid[J]. Applied Chemistry, 2019, 48(2): 412–417. doi: 10.3969/j.issn.1671-3206.2019.02.039
|
[5] |
杜涛,姚奕明,蒋廷学,等. 合成聚合物压裂液最新研究及应用进展[J]. 精细石油化工进展,2016,17(1):1–5. doi: 10.13534/j.cnki.32-1601/te.2016.01.001
DU Tao, YAO Yiming, JIANG Tingxue, et al. Recent progress of research on synthetic polymer fracturing fluids and their appli-cation[J]. Advances in Fine Petrochemicals, 2016, 17(1): 1–5. doi: 10.13534/j.cnki.32-1601/te.2016.01.001
|
[6] |
于洋,郭粉娟,李立,等. 自缔合压裂液优选及应用[J]. 断块油气田,2021,28(4):566–570. doi: 10.6056/dkyqt202104025
YU Yang, GUO Fenjuan, LI Li, et al. TOptimization and application of self-association fracturing fluid[J]. Fault Block Oil & Gas Field, 2021, 28(4): 566–570. doi: 10.6056/dkyqt202104025
|
[7] |
张伟,任登峰,周进,等. 耐温耐盐低伤害压裂液聚合物稠化剂的研制及应用[J]. 特种油气藏,2022,29(6):159–167.
ZHANG Wei, REN Dengfeng, ZHOU Jin,et al. Development and application of polymer thickener for fracturing fluid with high temperature and salt resistance and low damage[J]. Special Oil & Gas Reserviors, 2022, 29(6): 159–167.
|
[8] |
王超,崔明月,张旭,等. 缓速交联超高温合成聚合物压裂液稠化剂研究[J]. 钻井液与完井液,2022,39(3):390–396.
WANG Chao, CUI Mingyue, ZHANG Xu, et al. Study on fracturing fluid formulated with ultra-high temperature retarded crosslinking polymers[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 390–396.
|
[9] |
吕振虎,邬国栋,郑苗,等. 基于溶胀–熟化机理的疏水缔合聚合物速溶压裂液技术[J]. 石油钻探技术,2019,47(4):104–109.
LYU Zhenhu, WU Guodong, ZHENG Miao, et al. An instantly dissolving fracturing fluid technology using hydrophobic associating polymers based on swelling-curing mechanisms[J]. Petroleum Drilling Techniques, 2019, 47(4): 104–109.
|
[10] |
周成裕,陈馥,黄磊光. 一种疏水缔合物压裂液稠化剂的室内研究[J]. 石油与天然气化工,2008,37(1):62–64. doi: 10.3969/j.issn.1007-3426.2008.01.017
ZHOU Chengyu, CHEN Fu, HUANG Leiguang. A laboratory study on one kind of hydrophobic association fracturing fluid gelati-nizer[J]. Chemical Engineering of Oil & Gas, 2008, 37(1): 62–64. doi: 10.3969/j.issn.1007-3426.2008.01.017
|
[11] |
DAI Caili, XU Zhongliang, WU Yining, et al. Design and study of a novel thermal-resistant and shear-stable amphoteric polyacrylamide in high-salinity solution[J]. Polymers, 2017, 9(7): 296.
|
[12] |
QUAN Hongping, TIAN Haiyang, HUANG Zhiyu, et al. Salt stimulus response of a carboxyl betaine amphoteric hydrophobic associative polyacrylamide[J]. Russian Journal of Applied Chemistry, 2017, 90(7): 1193–1201. doi: 10.1134/S1070427217070266
|
[13] |
李志臻. 电吸引缔合聚合物压裂液稠化剂的合成及配方研究[D]. 成都: 西南石油大学, 2015.
LI Zhizhen. Study on the synthesis and formulation of the thickener for the electroattractive associating polymer fracturing fluid [D]. Chengdu: Southwest Petroleum University, 2015
|
[14] |
马喜平,代磊阳,马启睿. 一种具有优良抑制性能降滤失剂的合成与评价[J]. 精细化工,2014,31(5):633–637. doi: 10.13550/j.jxhg.2014.05.128
MA Xiping, DAI Leiyang, Ma Qirui. Synthesis and evaluation of a fluid loss additive with significant inhibition effect[J]. Fine Chemicals, 2014, 31(5): 633–637. doi: 10.13550/j.jxhg.2014.05.128
|
[15] |
童甲甲. 不同离子型PAM的合成与应用研究[D]. 淮南: 安徽理工大学, 2017.
TONG Jiajia. Study on the synthesis and application of different type of polyacrylamide[D]. Huainan: Anhui University of Technology, 2017
|
[16] |
肖光. 两性聚丙烯酰胺的合成及其增强性能的研究[D]. 青岛: 青岛科技大学, 2019.
XIAO Guang. Study on synthesis and strength of amphoteric polyacylamide[D]. Qingdao: Qingdao University of Science and Technology, 2019
|
[17] |
董国峰. 一种用于二氧化碳泡沫压裂液的稠化剂研究[D]. 成都: 西南石油大学, 2017.
DONG Guofeng. Study on a thickener for carbon dioxide foam fracturing fluid [D]. Chengdu: Southwest Petroleum University, 2017
|
[18] |
王传兴. 两性聚丙烯酰胺分散体系的合成及溶胀特性[D]. 青岛: 青岛科技大学, 2010.
WANG Chuanxing. Preparation and swelling properties of amphoterric polyacrylamide dispersion[D]. Qingdao: Qingdao University of Science and Technology, 2010
|
[19] |
吴伟,刘平平,孙昊. AAMS-1疏水缔合聚合物压裂液稠化剂合成与应用[J]. 钻井液与完井液,2016,33(5):114–118.
WU Wei, LIU Pingping, SUN Hao. Synthesis and application of a hydrophobically associating polymer viscosifier for fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 114–118.
|
[20] |
蓝程程,方波,卢拥军,等. 三异丙醇胺改性黄原胶溶液流变特性[J]. 钻井液与完井液,2019,36(3):371–377. doi: 10.3969/j.issn.1001-5620.2019.03.019
LAN Chengcheng, FANG Bo, LU Yongjun, et al. Rheology of triisopropanolamine modified xanthan water solution[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 371–377. doi: 10.3969/j.issn.1001-5620.2019.03.019
|
[21] |
ZHANG Yang, MAO Jincheng, ZHAO Jinzhou, et al. Preparation of a novel fracturing fluid system with excellent elasticity and low friction[J]. Polymers, 2019, 11(10): 1539–1560. doi: 10.3390/polym11101539
|
[22] |
SY/T 6376—2008 压裂液通用技术条件[S].
SY/T 6376—2008 General technical specifications of fracturing fluids[S].
|
1. |
邸士莹,赵云飞,马收,魏玉华,程时清,缪立南. 裂缝性致密油藏水平井缝间增产方法. 大庆石油地质与开发. 2025(01): 168-174 .
![]() | |
2. |
石登科,程时清,赵丹凤,汪洋,刘秀伟,徐泽轩. 基于PKN模型的致密油藏注水诱导裂缝数值模拟方法. 油气地质与采收率. 2025(01): 174-185 .
![]() | |
3. |
危常胜. 钻探企业绿色低碳发展思路及建议研究. 石油石化节能与计量. 2024(03): 75-78 .
![]() | |
4. |
宋君,李海燕,宋伟,刘亦菲,李金海,潘悦文,刘俊龙. 水驱油藏乳液中盐水对沥青质沉淀的影响. 特种油气藏. 2024(01): 123-130 .
![]() | |
5. |
刘成林,任杨,孙林,刘伟新,匡腊梅,张强,马喜超. 陆丰油田古近系低渗高温深层储层自源闭式强化注水技术研究与应用. 中国海上油气. 2024(02): 159-166 .
![]() | |
6. |
李忠诚,鲍志东,王洪学,张栋. 基于高压汞灯荧光显微观测的剩余油定量分析方法. 石油钻探技术. 2024(03): 112-117 .
![]() | |
7. |
周晋冲,曹仁义,蒲保彪,王继伟,吕柄辰,易琪. 致密油藏多轮次注水吞吐动态应力场及裂缝扩展规律研究. 岩石力学与工程学报. 2024(12): 3005-3017 .
![]() | |
8. |
康少飞,蒲春生,蒲景阳,王凯,黄飞飞,樊乔. 致密油藏暂堵强化注水吞吐及暂堵分流数学模型研究. 油气地质与采收率. 2023(04): 173-182 .
![]() | |
9. |
宋保建,李景全,孙宜丽,张薇,刘鹏. 致密油藏CO_2吞吐参数优化数值模拟研究. 特种油气藏. 2023(04): 113-121 .
![]() |