CUI Chuanzhi, SHENG Qian, JIANG Yidong, YANG Feng, JIA Peifeng. Development and Application of Borehole Insulation Techniques for the Development of Heavy Oil Production in the Dongxin Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(1): 79-84. DOI: 10.11911/syztjs.201601015
Citation: CUI Chuanzhi, SHENG Qian, JIANG Yidong, YANG Feng, JIA Peifeng. Development and Application of Borehole Insulation Techniques for the Development of Heavy Oil Production in the Dongxin Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(1): 79-84. DOI: 10.11911/syztjs.201601015

Development and Application of Borehole Insulation Techniques for the Development of Heavy Oil Production in the Dongxin Oilfield

More Information
  • Received Date: June 28, 2015
  • Revised Date: November 24, 2015
  • Due to thermal loss and temperature drop during oil lifting in the wellbore, the viscosities of heavy oil may increase rapidly and so will the lifting loads. Accordingly, it is important to develop effective insulation techniques for borehole to enhance productivity of heavy oil. The Hansan mathematical model for calculating the heavy oil wellbore temperature was established based on the theories of thermal transmission. The wellbore temperature distribution in Well Y12X2X3 was calculated and analyzed. In addition, the liquid-producing capacity, the type and length of insulation tubing were analyzed and optimized as main factors of wellbore temperature distribution. Reasonable wellbore heat preservation measures included choosing insulated tubing which length with a length of 1, 000 m and increasing the fluid volume from 11 m3/d to 20 m3/d. Field application showed that the wellbore temperature was enhanced from 20.5℃ to 41.5℃, and the viscosity of crude oil above a depth of 1, 000 m was greatly reduced. Eventually, the fluidity of oil as well as the filling level of the rod pump were also increased while the pumping efficiency increased by 47%. The results showed that the mathematical model for calculating the heavy oil wellbore temperature could describe the wellbore temperature accurately and the resulting effective wellbore insulation measures could be followed to enhance heavy oil productivity.
  • [1]
    于晓丹.垂直井筒两相流温度场计算方法研究与应用[D].青岛:中国石油大学(华东)石油工程学院,2007. YU Xiaodan.Research and application of temperature distribution for two-phase flow in vertical pipes[D].Qingdao:China University of Petroleum (Huadong),School of Petroleum Engineering,2007.
    [2]
    王谊.特超稠油井井筒温度场计算与分析[D].青岛:中国石油大学(华东)石油工程学院,2008. WANG Yi.Calculation and analysis of wellbore temperature distribution in the super heavy oilfield[D].Qingdao:China University of Petroleum(Huadong),School of Petroleum Engineering,2008.
    [3]
    刘庆.东营凹陷东辛油田油源分析和成藏过程研究[J].成都理工大学学报(自然科学版),2005,32(3):263-270. LIU Qing.Oil source correlation and oil accumulation process of the Dongxin Oilfield,Dongying Depression,China[J].Journal of Chengdu University of Technology(Science Technology Edition),2005,32(3):263-270.
    [4]
    赵益忠,孙磉礅,高爱花,等.稠油油藏蒸汽吞吐井长效防砂技术[J].石油钻探技术,2014,42(3):90-94. ZHAO Yizhong,SUN Sangdun,GAO Aihua,et al.Long-term sand control technology for multiple round steam huff and puff wells in heavy oil reservoirs[J].Petroleum Drilling Techniques,2014,42(3):90-94.
    [5]
    梁丹,冯国智,曾祥林,等.海上稠油两种热采方式开发效果评价[J].石油钻探技术,2014,42(1):95-99. LIANG Dan,FENG Guozhi,ZENG Xianglin,et al.Evaluation of two thermal methods in offshore heavy oilfields development[J].Petroleum Drilling Techniques,2014,42(1):95-99.
    [6]
    胡常忠.稠油开采技术[M].北京:石油工业出版社,1998:1-10. HU Changzhong.Heavy oil recovery technology[M].Beijing:Petroleum Industry Press,1998:1-10.
    [7]
    张凯,李阳,王琳娜,等.稠油流变特性实验研究[J].油气地质与采收率,2007,14(5):91-94,117. ZHANG Kai,LI Yang,WANG Linna,et al.Experimental study on rheological characteristics of heavy oil[J].Petroleum Geology and Recovery Efficiency,2007,14(5):91-94,117.
    [8]
    单学军,张士诚,王文雄,等.稠油开采中井筒温度影响因素分析[J].石油勘探与开发,2004,31(3):136-139. SHAN Xuejun,ZHANG Shicheng,WANG Wenxiong,et al.The factors influencing the wellbore temperature in heavy oil production[J].Petroleum Exploration and Development,2004,31(3):136-139.
    [9]
    姚传进,雷光伦,吴川,等.高凝原油井筒温度场影响因素研究[J].石油钻探技术,2011,39(5):74-78. YAO Chuanjin,LEI Guanglun,WU Chuan,et al.Study of the factors impacting on wellbore temperature in high pour point oil production[J].Petroleum Drilling Techniques,2011,39(5):74-78.
    [10]
    RAMEY J R.Wellbore heat transmission[J].SPE Petroleum Technology,1962,14(4):427-435.
    [11]
    SAGAR R K,DOTTY D R.Predicting temperature profiles in a flowing well[R].SPE 19702,1989.
    [12]
    HASAN A R,KABIR C S.Heat transfer during two-phase flow in well bores:part II:well bore fluid temperature[R].SPE 22948,1991.
    [13]
    HASAN A R,KABIR C S.Modeling changing storage during a shut-in test[R].SPE 24717,1994.
    [14]
    HAGOORT J.Ramey’s wellbore heat transmission revisited[R].SPE 87305,2004.
    [15]
    戴锅生.传热学[M].2版.北京:高等教育出版社,1999:31-34. DAI Guosheng.Heat transfer[M].2nd ed.Beijing:Higher Education Press,1999:31-34.
    [16]
    张琪.采油工程原理与设计[M].东营:石油大学出版社,2000:23-99. ZHANG Qi.Oil production engineering principle and design[M].Dongying:Petroleum University Press,2000:23-99.
    [17]
    HASAN A R,KABIC C S.Heat transfer during two phase flow in wellbores:part1:formation temperature[R].SPE 22866,1991.
    [18]
    ORKISZEWSKI J.Predicting two-phase pressure drops in vertical pipes[J].Journal of Petroleum Technology,1967,19(6):829-838.
    [19]
    彭轩,刘蜀知,蔡长宇,等.高凝油油藏自生热压裂井筒温度场计算模型[J].石油学报,2003,24(4):69-72,76. PENG Xuan,LIU Shuzhi,CAI Changyu,et al.Calculation model for well bore temperature profiles in high freezing point oil reservoirs with in-situ heat fracturing treatment[J].Acta Petrolei Sinica,2003,24(4):69-72,76.
    [20]
    王庆,吴晓东,刘长宇,等.高含CO2原油井筒流动压力和温度分布综合计算[J].石油钻采工艺,2010,32(1):65-69. WANG Qing,WU Xiaodong,LIU Changyu,et al.Coupling calculations of the temperature and pressure distribution of crude oil with high CO2 flow in wellbore[J].Oil Drilling Production Technology,2010,32(1):65-69.
    [21]
    毛伟,梁政.气井井筒压力、温度耦合分析[J].天然气工业,1999,19(6):66-69. MAO Wei,LIANG Zheng.Coupling analysis of the pressure and temperature in gas well borehole[J].Natural Gas Industry,1999,19(6):66-69.
    [22]
    陈家琅.石油气液两相管流[M].北京:石油工业出版社,1989:27-59. CHEN Jialang.Petroleum gas-liquid two-phase pipe flow[M].Beijing:Petroleum Industry Press,1989:27-59.
    [23]
    SY/T 5324-1994 预应力隔热油管[S]. SY/T5324-1994 Pre-stress insulated tubing[S].
  • Cited by

    Periodical cited type(7)

    1. 邹亦玮,代丹,王义昕,耿晨梓,朱思佳,姚晓. 有机膦酸盐缓凝剂异常增稠油井水泥浆作用机理. 钻井液与完井液. 2025(01): 110-116 .
    2. 李亚娇,罗阳,王铁,鞠恺,金鹏康,唐仁龙,赵兵朝,任武昂. 粉煤灰基充填膏体制备过程中氨气释放的超声强化特性. 煤炭学报. 2024(07): 3063-3073 .
    3. 雷旭,王江龙. 非常规油气储层中的新型压裂技术及压裂液体系研究进展. 山东化工. 2024(22): 113-115 .
    4. 李涛,杨哲,谭宇龙,曾知昊,罗双平,杨慎福. 提高铜锣峡储气库生产套管固井质量关键技术. 复杂油气藏. 2024(04): 467-471+479 .
    5. 田磊聚,朱海金,卢海川,侯薇,步玉环. 改善固井水泥石力学性能的研究进展. 钻井液与完井液. 2024(06): 695-708 .
    6. 程琳燕,郭美娟,焦程,柏险峰,王军锋,王立和. 小井眼水平井全套管固井技术探索及应用. 石化技术. 2024(12): 187-189 .
    7. 丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2810) PDF downloads (3074) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return