Wei Xuemei. Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil[J]. Petroleum Drilling Techniques, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019
Citation: Wei Xuemei. Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil[J]. Petroleum Drilling Techniques, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019

Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil

More Information
  • Received Date: October 12, 2014
  • Revised Date: April 07, 2015
  • During heavy oil catalytic aquathermolysis assisted by steam huff and puff, chemical properties of crude oil within these formations may vary to some degree due to temperature distribution differences. To appropriately simulate such changes of crude oil in these formations and predict well productivity with steam-assisted huff-and-puff in heavy oil development, the impact of distribution of temperature fields within the formation on heavy oil catalytic aquathermolysis are expressed in terms of viscosity change versus temperature. In the simulation, only the two-phase flow of oil and water are considered while gravity and capillary forces are not taken into account.Then those changes are introduced into the well-developed model in numerical simulation of steam-assisted huff-and-puff operations to construct numerical model for 2D two-phase steam-assisted huff-and-puff operations. In addition, techniques available to obtain relevant solutions are also provided. The model was used to simulate field tests of the fourth round of steam-assisted huff-and-puff catalytic aquathermolysis in Well K92N6 in the Gudong Oilfield. According to calculation results, oil production in this round of development would be around 4 560.4 t, while the actual production during the period was determined to be 4 899.7 t. The difference between actual and simulated was reasonable, about 6.92%, which could meet engineering requirements. Research results demonstrated that crude oil for catalytic cracking can be classified into three categories: unreacted, low-temperature reactive and high-temperature reactive according to temperature distribution around the borehole during steam-assisted huff-and-puff. The viscosity-temperature relationships of crude oil after cracking and modification of the three types can be placedinto theexponential function of temperatures and then be introduced into a mature steam-assisted huff-and-puff model to perform mathematically approximate characterization and simulation of the irreversible property changing progress in catalytic cracking during steam-assisted huff-and-puff processes. Relevant simulation results will provide guidance in optimization of technical parameters and inthe prediction of productivity for catalytic cracking techniques in steam-assisted huff-and-puff operations.
  • [1]
    王洋,蒋平,葛际江,等.井楼油田氮气辅助蒸汽吞吐机理实验研究[J].断块油气田,2013,20(5):667-670.Wang Yang,Jiang Ping,Ge Jijiang,etal.Laboratory study on mechanism of nitrogen-assisted steam stimulation in Jinglou Oilfield[J].Fault-Block Oil Gas Field,2013,20(5):667-670.
    [2]
    杨阳,刘慧卿,庞占喜,等.孤岛油田底水稠油油藏注氮气辅助蒸汽吞吐的选区新方法[J].油气地质与采收率,2014,21(3):58-61.Yang Yang, Liu Huiqing, Pang Zhanxi,et al. A new method of selecting zone for nitrogen-assisted steam stimulation in heavy oil reservoir with bottom water in Gudao Oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(3):58-61.
    [3]
    梁丹,冯国智,曾祥林,等.海上稠油两种热采方式开发效果评价[J].石油钻探技术,2014,42(1):95-99.Liang Dan,Feng Guozhi,Zeng Xianglin,et al.Evaluation of two thermal methods in offshore heavy oilfields development[J].Petroleum Drilling Techniques,2014,42(1):95-99.
    [4]
    卢川,刘慧卿,卢克勤,等.浅薄层稠油水平井混合气与助排剂辅助蒸汽吞吐研究[J].石油钻采工艺,2013,35(2):106-109.Lu Chuan,Liu Huiqing,Lu Keqin, et al.Flexibility study of horizontal well cyclic steam simulation assisted by combination gasand cleanup addictive for shallow-thin heavy oil reservoir[J]. Oil Drilling Production Technology,2013,35(2):106-109.
    [5]
    巩永刚,王杰祥,王小林.水热裂解开采稠油技术[J].石油钻探技术,2006,34(2):61-64.Gong Yonggang,Wang Jiexiang,Wang Xiaolin.Aquathermolysis:a techniques for recovering heavy oil reservoirs[J].Petroleum Drilling Techniques,2006,34(2):61-64.
    [6]
    赵晓非.超稠油水热裂解反应催化剂及其载体的研制[D].大庆:大庆石油学院,2006.Zhao Xiaofei.Aquathermolysis catalyst of super heavy oil and development of its carrier [D].Daqing:Daqing Petroleum Institute,2006.
    [7]
    Clark P D,Hyne J B.Steam oil chemical reactions:mechanisms for the aquathermolysis of heavy oil[J].Aostra Journal of Reacher,1984,1(1):15-20.
    [8]
    Monin J C,Audlbert A.Thermal cracking of heavy-oil mineral matrix system[J].SPE Reservoir Engineering,1988,3(4):1243-1250.
    [9]
    郑延成,李克华,苑权,等.水热催化裂解对超稠油组成的影响[J].石油钻探技术,2005,33(2):57-59.Zheng Yancheng,Li Kehua,Yuan Quan,et al.Effects of aquathermolysis on heavy oil components[J].Petroleum Drilling Techniques,2005,33(2):57-59.
    [10]
    范洪富,张翼,刘永建.蒸气开采过程中金属盐对稠油粘度及平均分子量的影响[J].燃料化学学报,2003,31(5):429-433.Fan Hongfu,Zhang Yi,Liu Yongjian.Effects of metal salts and mineral on viscosity and molecular weight of heavy oil under steam condition[J].Journal of Fuel Chemistry and Technology,2003,31(5):429-433.
    [11]
    Clark P D,Hyne J B,Tyrer J D.Chemistry of organicsulfur compound type occurring in heavy oil sands:1.high temperature hydrolysis and thermolysis of therahydrothiophene in relation to steam stimulation processes[J].Fuel,1983,62(5):959-962.
    [12]
    王杰祥,樊泽霞,任熵,等.单家寺稠油催化水热裂解实验研究[J].油田化学,2006,23(3):205-208.Wang Jiexiang,Fan Zexia,Ren Shang,et al.An experimental study on catalytic aquathermolysis of Shanjiasi heavy oil[J].Oilfield Chemistry,2006,23(3):205-208.
    [13]
    樊泽霞,赵福麟,王杰祥,等.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报,2006,34(3):315-318.Fan Zexia,Zhao Fulin,Wang Jiexiang,et al.Upgrading and viscosity reduction of super heavy oil by aqua-thermolysis with hydrogen donor[J].Journal of Fuel Chemistry and Technology,2006,34(3):315-318.
    [14]
    范洪富,刘永建,赵晓非,等.国内首例井下水热裂解催化降粘开采稠油现场试验[J].石油钻采工艺,2001,23(3):42-44,85.Fan Hongfu,Liu Yongjian,Zhao Xiaofei,et al.First field experimental of recovery heavy oil using down-hole catalytic method in China[J].Oil Drilling Production Technology,2001,23(3):42-44,85.
    [15]
    孙国宝,盖平原,刘慧卿.水平井蒸汽吞吐三维静态温度分布计算模型[J].断块油气田,2010,17(5):566-570.San Guobao,Gai Pingyuan,Liu Huiqing.Calculation model of three-dimension-al static temperature profile for steam huff and puff of horizontal well[J].Fault-Block Oil Gas Field,2010,17(5):566-570.
    [16]
    Mueller T D.A mathematical model of reservoir response during the cyclic injection of steam[J].Society of Petroleum Engineers Journal,1967,7(2):174-188.
    [17]
    Ferrer J,Maracalbo M S,Farouq Ali.A three-phase,two-dimensional compositional thermal simulator for steam in processes[J].Journal of Canadian Petroleum Technology,1977,16(1):78-90.
    [18]
    Crookston R B,Culham W E,Chen W H.A numerical simulation model for thermal recovery processes[J].Society of Petroleum Engineers Journal,1979,19(1):37-58.
    [19]
    Rubin B,Buchanan W L.A general purpose thermal model[J].Society of Petroleum Engineers Journal,1985,25(2):202-214.
    [20]
    李冬冬.超稠油油藏水平井蒸汽复合吞吐渗流数学模型研究[D].青岛:中国石油大学(华东)石油工程学院,2012.Li Dongdong.Study on percolation mathematical model of combined steam stimulation with horizontal well in super heavy oil reservoir[D].Qingdao:China University of Petroleum (Huadong),School of Petroleum Engineering,2012.
  • Related Articles

    [1]LI Tao, YANG Zhe, XU Weiqiang, YANG Qiang, YANG Zhaoliang. Optimized and Fast Drilling Technology for Deep Shale Gas Horizontal Wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16-21. DOI: 10.11911/syztjs.2022036
    [2]YANG Jing, TU Fuhong, HUO Rujun, TAO Ruidong, SHANG Zibo, GUO Liang. Key Technologies for Slim Hole Drilling in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 22-27. DOI: 10.11911/syztjs.2020082
    [3]SHEN Zhaochao, HUO Rujun, YU Yanfei, DONG Yifan, NI Xiaowei, LEI Yu. One-Trip Drilling Technology of the Second-Spud Section for Slim-Holes in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2020, 48(6): 15-20. DOI: 10.11911/syztjs.2020081
    [4]HUANG Guoping, HE Shiming, TANG Ming, LIU Yang, LEI Ming. A Study on the Effect of Displacement Gas Cut on Fractured Reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21-25. DOI: 10.11911/syztjs.2018125
    [5]KUANG Lixin, LIU Weidong, GAN Xinxing, JIANG Zhenghua, CHEN Shikui. Acceleration Potentials Analysis of Shale Gas Horizontal Well Drilling in the South Pingqiao Block of Fuling[J]. Petroleum Drilling Techniques, 2018, 46(4): 16-22. DOI: 10.11911/syztjs.2018102
    [6]YANG Haiping. Optimized and Fast Drilling Technology for Horizontal Shale Gas Wells in Pingqiao and Jiangdong Blocks of Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 13-19. DOI: 10.11911/syztjs.2018071
    [7]SHI Bingzhong, XIE Chao, LI Sheng, LIU Jinhua, CHEN Xiaofei. Development and Application of Drilling Fluid in the Jin-58 Well Block of the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2017, 45(6): 37-41. DOI: 10.11911/syztjs.201706007
    [8]LIU Biao, PAN Lijuan, ZHANG Jun, BAI Binzhen, LI Shuanggui. The Optimized Drilling Techniques Used in Ultra-Deep and Slim-Hole Horizontal Wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11-16. DOI: 10.11911/syztjs.201606002
    [9]Wan Xuxin. Oil-Based Drilling Fluid Applied in Drilling Shale Oil Reservoirs in Bonan Block[J]. Petroleum Drilling Techniques, 2013, 41(6): 44-50. DOI: 10.3969/j.issn.1001-0890.2013.06.009
    [10]Zhao Xiangyang, Zhang Xiaoping, Chen Lei, Zhang Zhenhuo, Sun Yan. Application of Formate Drilling Fluid in Changbei Block[J]. Petroleum Drilling Techniques, 2013, 41(1): 40-44. DOI: 10.3969/j.issn.1001-0890.2013.01.008
  • Cited by

    Periodical cited type(15)

    1. 蔡振,张建鑫,郭少璞. 油田超深井钻井关键技术研究与分析. 石化技术. 2023(04): 101-103 .
    2. 黄峰,王有伟,田进. 深层高温页岩气井固井流体研究进展. 辽宁化工. 2022(01): 54-59+63 .
    3. 谢关宝. 轻质水泥浆固井质量测井评价标准构建. 石油钻探技术. 2022(01): 119-126 . 本站查看
    4. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
    5. 宋振响,周卓明,徐旭辉,王保华,李浩,马中良,陈斐然. “十三五”中国石化油气资源评价关键技术进展与发展方向. 中国石油勘探. 2022(03): 27-37 .
    6. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看
    7. 甘心. 钻井提速用振动冲击工具研究进展. 钻探工程. 2021(02): 85-93 .
    8. 刘平全,李磊兵,施禹岑,韩龙. 井壁深穿透电控钻孔技术研究与现场试验. 石油钻探技术. 2021(03): 55-61 . 本站查看
    9. 张锦宏. 中国石化页岩油工程技术现状与发展展望. 石油钻探技术. 2021(04): 8-13 . 本站查看
    10. 汪海阁,黄洪春,毕文欣,纪国栋,周波,卓鲁斌. 深井超深井油气钻井技术进展与展望. 天然气工业. 2021(08): 163-177 .
    11. 杨志军,杜旭林,曹仁义,葛增壮,杨松林. 复杂小断块采收率及经济合理井网密度模型. 断块油气田. 2020(01): 80-84 .
    12. 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 . 本站查看
    13. 苏剑波. 高温高压深井试油完井初探. 石化技术. 2020(10): 200-201 .
    14. 杨孟芝,吴海欧,王恒,魏斌,石文睿. 页岩气水平井裸眼井测井工艺及应用. 江汉石油职工大学学报. 2020(06): 18-20 .
    15. 黎伟,夏杨,陈曦. RFID智能滑套设计与试验研究. 石油钻探技术. 2019(06): 83-88 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (3604) PDF downloads (4224) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return