Wang Jiexiang, Chen Zheng, Jing Wei, Lu Guochen, Niu Zhiwei. Prediction of the Effect CO2 Immiscible Flooding Based on Support Vector Machine[J]. Petroleum Drilling Techniques, 2015, 43(2): 84-89. DOI: 10.11911/syztjs.201502015
Citation: Wang Jiexiang, Chen Zheng, Jing Wei, Lu Guochen, Niu Zhiwei. Prediction of the Effect CO2 Immiscible Flooding Based on Support Vector Machine[J]. Petroleum Drilling Techniques, 2015, 43(2): 84-89. DOI: 10.11911/syztjs.201502015

Prediction of the Effect CO2 Immiscible Flooding Based on Support Vector Machine

More Information
  • Received Date: August 09, 2014
  • Revised Date: November 02, 2014
  • In order to predict the effect of CO2 immiscible flooding rapidly and accurately, a prediction model based on support vector machine was established. It takes 13 geological and engineering parameters (i.e. the ratio of residual formation pressure and CO2 miscibility pressure, porosity, permeability, reservoir mid-depth, net pay, formation temperature, relative density of crude oil, oil saturation, oil viscosity, coefficient of permeability variation, injection-production ratio, injection rate, and the ratio of water/gas alternating injection) as input parameters, and the average daily oil increment per well as output parameter. with six CO2 immiscible flooding projects and 1 CO2 miscible flooding project as training samples, and two CO2 immiscible flooding projects and one CO2 miscible flooding project as testing samples in China, the accuracy of the model was verified. The results showed that average relative error between predicted value and actual value of above 3 samples was 5.57%, which met the engineering requirement. The model was applied to predict the effect of CO2 immiscible flooding in Yaoyingtai Oilfield, indicating a relative error of only 1.30% in relation with the actual value. It suggested that the method based on support vector machine is feasible and effective to predict the effect of CO2 immiscible flooding.
  • [1]
    祝春生,程林松.低渗透油藏CO2驱提高原油采收率评价研究[J].钻采工艺,2007,30(6):55-57,60. Zhu Chunsheng,Cheng Linsong.Research on CO2 flooding in low permeability reservoir[J].Drilling Production Technology,2007,30(6):55-57,60.
    [2]
    唐人选,唐小立,秦红祥.注CO2混相驱油藏合理采收率确定[J].石油钻探技术,2012,40(3):112-115. Tang Renxuan,Tang Xiaoli,Qin Hongxiang.Determination of reasonable recovery ratio with CO2 miscible flooding in reservoir[J].Petroleum Drilling Techniques,2012,40(3):112-115.
    [3]
    Yin D,Li Y,Zhao D,et al.Long core simulation of advanced CO2 injection in ultra-low permeability reservoir:the Fifth International Conference on Computational and Information Sciences,Shiyang,June 21-23,2013[C].
    [4]
    王涛.人工神经网络在CO2驱采收率预测中的应用[J].特种油气藏,2011,18(4):77-79. Wang Tao.Application of artificial neural network in recovery factor forecast of carbon dioxide flooding[J].Special Oil Gas Reservoirs,2011,18(4):77-79.
    [5]
    吴晓东,尚庆华,刘长宇,等.一种CO2驱油井产能预测方法及其应用[J].石油钻采工艺,2012,34(1):72-74. Wu Xiaodong,Shang Qinghua,Liu Changyu,et al.A productivity prediction method for CO2 flooding well and its application[J].Oil Drilling Production Technology,2012,34(1):72-74.
    [6]
    肖京男,汪志明,魏建光,等.改进LSSVM在水平井产能预测中的应用[J].石油钻探技术,2010,38(6):95-98. Xiao Jingnan,Wang Zhiming,Wei Jianguang,et al.Application of LSSVM improved horizontal well productivity prediction[J].Petroleum Drilling Techniques,2010,38(6):95-98.
    [7]
    郭永恒.随钻测井曲线预测及更新方法研究[J].石油钻探技术,2010,38(6):25-28. Guo Yongheng.Prediction and update of LWD curve while drilling[J].Petroleum Drilling Techniques,2010,38(6):25-28.
    [8]
    钟仪华,张志银,朱海双.特高含水期油田产量预测新方法[J].断块油气田,2011,18(5):641-644. Zhong Yihua,Zhang Zhiyin,Zhu Haishuang.A new method to predict production of oilfields in ultrahigh water-cut stage[J].Fault-Block Oil Field,20l1,18 (5):641-644.
    [9]
    白晓虎,姜汉桥,王硕亮,等.油田开发动态指标多步预测模型研究[J].断块油气田,2010,17(3):345-347. Bai Xiaohu,Jiang Hanqiao,Wang Shuoliang,et al.Multi-step forecasting model of dynamic index for oilfield development[J].Fault-Block Oil Field,20l0,17 (3):345-347.
    [10]
    陈民锋,白晓虎,郑伟,等.基于支持向量机的早期聚合物驱动态预测研究[J].断块油气田,2012,19(2):199-202. Chen Minfeng,Bai Xiaohu,Zheng Wei,et al.Development index prediction of early polymer flooding based on support vector machine[J].Fault-Block Oil Field,20l2,19 (2):199-202.
    [11]
    肖冬生,乔东生.低阻油层识别新方法及其应用[J].断块油气田,2010,17(4):509-512. Xiao Dongsheng,Qiao Dongsheng.New method for identifying low resistivity reservoirs and its application[J].Fault-Block Oil Field,20l0,17 (4):509-512.
    [12]
    袁士宝,蒋海岩,鲍丙生,等.基于支持向量机的火烧油层效果预测[J].石油勘探与开发,2007,34(1):104-107. Yuan Shibao,Jiang Haiyan,Bao Bingsheng,et al.Effect prediction of in-situ combustion based on support vector machine[J].Petroleum Exploration and Development,2007,34(1):104-107.
    [13]
    李春锦,闫云聚.基于支持向量机的中国石油需求量预测研究[J].西安石油大学学报:自然科学版,2013,28(2):103-106. Li Chunjin,Yan Yunju.Prediction of China’s oil demand based on support vector machine[J].Journal of Xi’an Shiyou University:Natural Science,2013,28(2):103-106.
    [14]
    杨磊,王化增,陈子凌.基于支持向量机的油气储量价值等级评价[J].中国石油大学学报:自然科学版,2012,36(3):192-196. Yang Lei,Wang Huazeng,Chen Ziling.Assessing value classification of oil and gas reserve based on support vector machine[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(3):192-196.
    [15]
    Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,1995.
    [16]
    郑云川.注气提高采收率候选油藏筛选方法及其应用研究[D].南充:西南石油学院石油工程学院,2003. Zheng Yunchuan.Gas injection EOR screening candidate reservoirs method and its application [D].Nanchong:Southwest Petroleum Institute,School of Petroleum Engineering,2003.
    [17]
    Rivas O,Embid S,Bolvar F.Ranking reservoirs for carbon dioxide flooding processes[R].SPE 23641,1994.
    [18]
    雷怀彦,龚承林,官宝聪.注CO2混相驱油藏筛选新方法[J].中国石油大学学报:自然科学版,2008,32(1):72-76. Lei Huaiyan,Gong Chenglin,Guan Baocong.New screening method for reservoir by CO2 injection miscible flooding[J].Journal of China University of Petroleum:Edition of Natural Science,2008,32(1):72-76.
    [19]
    杨佳佳,姜琦刚,陈永良,等.基于最小二乘支持向量机和高分辨率遥感影像的大尺度区域岩性划分[J].中国石油大学学报:自然科学版,2012,36(1):60-67. Yang Jiajia,Jiang Qigang,Chen Yongliang,et al.Lithology division for large-scale region segmentation based on LS-SVM and high resolution remote sensing images[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(1):60-67.
    [20]
    Talbi H,Draa A,Batouche M.A new quantum-inspired genetic algorithm for solving the traveling salesman problem[C]// Proceedings of the IEEE International Conference on Industrial Technology,2004.[S.L.]:IEEE,2004:1192-1197.
    [21]
    廖海婴.腰英台DB34井区CO2驱替油藏数值模拟研究[J].西安石油大学学报:自然科学版,2010,25(5):50-53. Liao Haiying.Numerical simulation of oil displacement with carbon dioxide in DB34 well block,Yaoyingtai Oilfield[J].Journal of Xi’an Shiyou University:Natural Science,2010,25(5):50-53.
  • Related Articles

    [1]QI Xiao, ZHANG Zhang, LI Dong, YIN Lu, YU Yang. Evaluation of Fracturing Effects in Offshore Sandstone Reservoirs Based on Array Acoustic Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128-134. DOI: 10.11911/syztjs.2023069
    [2]HOU Yawei, LIU Chao, XU Zhongbo, AN Yuhua, LI Jingling. A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. DOI: 10.11911/syztjs.2022102
    [3]SUN Lin, LI Xuguang, HUANG Liping, XIA Guang, YANG Miao. Research and Application of Prolonged-Effect Acidizing Technology for Water Injection Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 90-95. DOI: 10.11911/syztjs.2021029
    [4]DI Qinfeng, WU Zhihao, WANG Wenchang, QIN Guangxu, CHEN Feng. An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM[J]. Petroleum Drilling Techniques, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065
    [5]ZHANG Honglu, TAN Junlong, YI Chenggao, LI Yiling, LIU Xin. New Lifting Technology for CO2 Flooding Wells with High GOR in Caoshe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 87-91. DOI: 10.11911/syztjs.201702014
    [6]XUE Jianglong, LIU Yingfei, ZHU Wenping, LI Yang. The Types of Reservoirs Encountered by the Wells in the Halahatang Oilfield and Water Flooding Effects[J]. Petroleum Drilling Techniques, 2016, 44(1): 85-89. DOI: 10.11911/syztjs.201601016
    [7]Zeng Chunmin, Wei Longgui, Zhang Chao, Zhang Chong, Liu Xianyu, Huang Liang. Casing Wear Prediction for HTHP Gas Wells in West of South China Sea Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 46-53. DOI: 10.11911/syztjs.201506009
    [8]Yuan Rui. Method to Identify Complicated Lithology of Clastic Rocks in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(6): 64-67. DOI: 10.11911/syztjs.201406013
    [9]Song Zhonghua, Zhang Shicheng, Wang Tengfei, Shen Jianxin, Duan Yuming, Liu Lanying. Downhole Throttling Technology for Gas Hydrate Prevention in Deep Gas Wells of Tarim Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 91-96. DOI: 10.3969/j.issn.1001-0890.2014.02.018
  • Cited by

    Periodical cited type(6)

    1. 张阳杰,张智,王杨,邓皓匀. 基于时序数据的环空带压预测混合模型. 科学技术与工程. 2025(05): 1870-1877 .
    2. 陆国琛,葛俊瑞,秦丙林,郭志辉,田天,王颖. 基于SVM模型的排水采气效果预测研究. 海洋石油. 2024(03): 62-66 .
    3. 王艳红. 一种基于变权重模糊识别的调驱效果预测方法. 化工设计通讯. 2022(03): 38-39+95 .
    4. 武丽芬,孔令帅,温海燕. 基于SVM模型的CO_2排放量分析. 电子技术与软件工程. 2022(20): 208-211 .
    5. 孙挺,赵颖,杨进,殷启帅,汪文星,陈缘. 基于支持向量机的钻井工况实时智能识别方法. 石油钻探技术. 2019(05): 28-33 . 本站查看
    6. 杜勇. 底水稠油油藏水平井复合增产技术. 石油钻探技术. 2016(01): 67-72 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (3293) PDF downloads (4371) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return