Citation: | HU Xiaodong, WANG Yajing, QIU Yang, et al. Evaluation indices for filtering performance of pump-stop water hammer signals in field fracturing [J]. Petroleum Drilling Techniques, 2024, 52(6):131−140. DOI: 10.11911/syztjs.2024079 |
To accurately evaluate the performance of the filtering algorithms for pump-stop water hammer pressure wave signals when water hammer pressure wave monitoring method is used for fracturing diagnosis, the resolution of the cepstrum response RC and the signal-to-noise ratio of the quefrency peak RQSN were adopted as evaluation indices for filtering performance of water hammer signals based on the measured water hammer signal of a horizontal well in China and its actual demand for filtering results. Based on the synchronization of the indices and the filtering performance, the reliability of the filtering indices was evaluated according to the sensitivity of the indices to the filtering performance. The results show a positive correlation between the RC and RQSN of the high-frequency water hammer signals and the filtering performance of the well-site signals, showing good sensitivity. Therefore, RC and RQSN can be used to evaluate the filtering performance of the pump-stop water hammer pressure wave high-frequency signal in field fracturing operations. The research results provide a technical approach for the feature analysis of the field signals, the optimization of the filtering algorithms, and the effectiveness evaluation of the filtering models in the field applications.
[1] |
王永辉,卢拥军,李永平,等. 非常规储层压裂改造技术进展及应用[J]. 石油学报,2012,33(增刊1):149–158.
WANG Yonghui, LU Yongjun, LI Yongping, et al. Progress and application of hydraulic fracturing technology in unconventional reservoir[J]. Acta Petrolei Sinica, 2012, 33(supplement 1): 149–158.
|
[2] |
赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121–142. doi: 10.3787/j.issn.1000-0976.2021.08.012
|
[3] |
蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9. doi: 10.11911/syztjs.2022065
JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9. doi: 10.11911/syztjs.2022065
|
[4] |
ECONOMIDES M J, NOLTE K G, AHMED U. Reservoir stimulation[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall, 1989: 291–292.
|
[5] |
李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024,52(1):1–7. doi: 10.11911/syztjs.2024001
LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1–7. doi: 10.11911/syztjs.2024001
|
[6] |
隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103. doi: 10.3787/j.issn.1000-0976.2023.02.009
SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103. doi: 10.3787/j.issn.1000-0976.2023.02.009
|
[7] |
BOGDAN A V, KEILERS A, OUSSOLTSEV D, et al. Real-time interpretation of leak isolation with degradable diverter using high frequency pressure monitoring[R]. SPE 182451, 2016.
|
[8] |
PARKHONYUK S, FEDOROV A, KABANNIK A, et al. Measurements while fracturing: nonintrusive method of hydraulic fracturing monitoring[R]. SPE 189886, 2018.
|
[9] |
雍锐,丘阳,周福建,等. 基于高频水击压力页岩气井暂堵效果评价[J]. 石油科学通报,2024,9(5):789–797. doi: 10.3969/j.issn.2096-1693.2024.05.060
YONG Rui, QIU Yang, ZHOU Fujian, et al. The evaluation of temporary plugging effect in shale gas wells based on high-frequency water hammer pressure[J]. Petroleum Science Bulletin, 2024, 9(5): 789–797. doi: 10.3969/j.issn.2096-1693.2024.05.060
|
[10] |
PANJAITAN M L, MORIYAMA A, MCMILLAN D, et al. Qualifying diversion in multi clusters horizontal well hydraulic fracturing in haynesville shale using water hammer analysis, step-down test and microseismic data[R]. SPE 189850, 2018.
|
[11] |
温杰雄,田伟,毕全福,等. 基于数字滤波的压裂停泵数据反演方法[J]. 中国科学技术大学学报,2018,48(5):392–399. doi: 10.3969/j.issn.0253-2778.2018.05.008
WEN Jiexiong, TIAN Wei, BI Quanfu, et al. A new data inversion analysis method based on digital filtered pump-stop data of hydraulic fracturing[J]. Journal of University of Science and Technology of China, 2018, 48(5): 392–399. doi: 10.3969/j.issn.0253-2778.2018.05.008
|
[12] |
罗英浩. 压裂停泵水击压力波衰减特征与裂缝形态智能评估方法[D]. 北京:中国石油大学(北京),2023.
LUO Yinghao. Decay characteristics of water hammer pressure wave and intelligent evaluation method of fracture morphology in fracturing pump-stopping[D]. Beijing: China University of Petroleum(Beijing), 2023.
|
[13] |
LI Yujiao, HU Xiaodong, ZHOU Fujian, et al. A new comprehensive filtering model for pump shut-in water hammer pressure wave signals during hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part E): 109796.
|
[14] |
ALOBAID H, KHAN A M, ALMULHIM A, et al. Comprehensive design and diagnostic approach for horizontal completions in carbonate environment[R]. SPE 210977, 2022.
|
[15] |
胡晓东,周福建,李宇娇,等. 压裂停泵水击压力波信号滤波方法与特征分析[J]. 石油科学通报,2021,6(1):79–91. doi: 10.3969/j.issn.2096-1693.2021.01.007
HU Xiaodong, ZHOU Fujian, LI Yujiao, et al. Filtering methods and characteristic analysis of water hammer pressure-wave signals from fracturing stop pumps[J]. Petroleum Science Bulletin, 2021, 6(1): 79–91. doi: 10.3969/j.issn.2096-1693.2021.01.007
|
[16] |
胡晓东,黄国鹏,周福建,等. 一种基于小波分解的水力压裂信号分析方法、装置和设备:CN202210128266.9[P]. 2022-07-22.
HU Xiaodong, HUANG Guopeng, ZHOU Fujian, et al. The method, device and equipment of hydraulic fracturing signal using wavelet decomposition: CN202210128266.9[P]. 2022-07-22.
|
[17] |
CAI Jianhua, CHEN Qingye. De-noising for NMR oil well logging signals based on empirical mode decomposition and independent component analysis[J]. Arabian Journal of Geosciences, 2015, 9(1): 55.
|
[18] |
邓瑞,王恺,张海博,等. 石油测井数据对调制噪声的响应[J]. 断块油气田,2007,14(2):83–85. doi: 10.3969/j.issn.1005-8907.2007.02.030
DENG Rui, WANG Kai, ZHANG Haibo, et al. Respond of petroleum log data to modulation noise[J]. Fault-Block Oil & Gas Field, 2007, 14(2): 83–85. doi: 10.3969/j.issn.1005-8907.2007.02.030
|
[19] |
PATIL P B, CHAVAN M S. A wavelet based method for denoising of biomedical signal[C]//International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012). Piscataway, New Jersey: IEEE Press, 2012: 278–283.
|
[20] |
RAKSHIT M, DAS S. An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter[J]. Biomedical Signal Processing and Control, 2018, 40: 140–148. doi: 10.1016/j.bspc.2017.09.020
|
[21] |
LINS CALDAS A S, TORRES PEREIRA E, NOBRE LEITE N M, et al. Towards automatic EEG signal denoising by quality metric optimization[C]//2020 International Joint Conference on Neural Networks (IJCNN). Piscataway, New Jersey: IEEE Press, 2020: 1–7.
|
[22] |
LI Chuanjiang, DENG Huiyin, YIN Shiyi, et al. sEMG signal filtering study using synchrosqueezing wavelet transform with differential evolution optimized threshold[J]. Results in Engineering, 2023, 18: 101150. doi: 10.1016/j.rineng.2023.101150
|
[23] |
张科,姜海旭,王靖宇. 基于滑动最速跟踪微分器的遥测数据滤波方法[J]. 西北工业大学学报,2020,38(3):515–522. doi: 10.3969/j.issn.1000-2758.2020.03.009
ZHANG Ke, JIANG Haixu, WANG Jingyu. A sliding window optimal tracking differentiator filtering method for satellite telemetry data[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 515–522. doi: 10.3969/j.issn.1000-2758.2020.03.009
|
[24] |
钟建军,宋健,由长喜,等. 基于信噪比评价的阈值优选小波去噪法[J]. 清华大学学报(自然科学版),2014,54(2):259–263.
ZHONG Jianjun, SONG Jian, YOU Changxi, et al. Wavelet de-noising method with threshold selection rules based on snr evaluations[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 259–263.
|
[25] |
ZHAO Xueyang, REN Xuhu, YAN Zhidan, et al. Research on denoising method of mud pulse signal based on adaptive coefficient kalman[C]//2022 3rd Asia Symposium on Signal Processing (ASSP). Piscataway, New Jersey: IEEE Press, 2022: 11–18.
|
[26] |
ZHAN Liwei, LI Chengwei. A comparative study of empirical mode decomposition-based filtering for impact signal[J]. Entropy, 2017, 19(1): 13.
|
[27] |
MA Shihan, LYU Bo, LIN Chuang, et al. EMG signal filtering based on variational mode decomposition and sub-band thresholding[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(1): 47–58. doi: 10.1109/JBHI.2020.2987528
|
[28] |
SRAITIH M, JABRANE Y. A denoising performance comparison based on ECG signal decomposition and local means filtering[J]. Biomedical Signal Processing and Control, 2021, 69: 102903. doi: 10.1016/j.bspc.2021.102903
|
[29] |
PLAPOUS C, MARRO C, SCALART P. Improved signal-to-noise ratio estimation for speech enhancement[J]. IEEE Transactions on Audio Speech and Language Processing, 2006, 14(6): 2098–2108. doi: 10.1109/TASL.2006.872621
|
[30] |
SUN Zhigang, GAO Mengmeng, WANG Guotao, et al. Research on evaluating the filtering method for broiler sound signal from multiple perspectives[J]. Animals, 2021, 11(8): 2238. doi: 10.3390/ani11082238
|
[31] |
POTVIN J R, BROWN S H M. Less is more: High pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates[J]. Journal of Electromyography and Kinesiology, 2004, 14(3): 389–399. doi: 10.1016/j.jelekin.2003.10.005
|
[32] |
CAI Jianhua, XIAO Yongliang. Filtering of nuclear magnetic resonance logging signal based on the generalized S transform and singular value decomposition[J]. Arabian Journal of Geosciences, 2018, 11(12): 305. doi: 10.1007/s12517-018-3641-0
|
[33] |
HU Yongjian, HUANG Yanfu, LI Xianyi. Automatic de-noising and recognition algorithm for drilling fluid pulse signal[J]. Petroleum Exploration and Development, 2019, 46(2): 393–400. doi: 10.1016/S1876-3804(19)60019-4
|
[34] |
亢武臣,杨书博,赵琪琪,等. 基于优化变分模态分解和互相关的钻井液脉冲信号处理方法[J]. 石油钻探技术,2023,51(3):144–151. doi: 10.11911/syztjs.2023068
KANG Wuchen, YANG Shubo, ZHAO Qiqi, et al. A pulse signal processing method for drilling fluid based on optimal variational mode decomposition and cross-correlation[J]. Petroleum Drilling Techniques, 2023, 51(3): 144–151. doi: 10.11911/syztjs.2023068
|
[35] |
CHEN Guo, YAN Zhidan, GAO Tingzheng, et al. Study on model-based pump noise suppression method of mud pulse signal[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108433. doi: 10.1016/j.petrol.2021.108433
|
[36] |
DING Weijie, HOU Shijun, TIAN Shuaikang, et al. A Bayesian optimized variational mode decomposition-based denoising method for measurement while drilling signal of down-the-hole drilling[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1–14.
|
[37] |
JIANG Ruochen, WEI Mingdong. An improved method of local mean decomposition with adaptive noise and its application to microseismic signal processing in rock engineering[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(9): 6877–6895. doi: 10.1007/s10064-021-02338-8
|
[38] |
ZHANG Chongchong, SHI Yannan, LIU Jiangong, et al. A denoising method of mine microseismic signal based on NAEEMD and frequency-constrained SVD[J]. The Journal of Supercomputing, 2022, 78(15): 17095–17113. doi: 10.1007/s11227-022-04554-9
|
[39] |
邵立明,孙永文,樊立新,等. γ射线测井信号数字滤波效果的评价方法[J]. 石油仪器,2007,21(6):40–43.
SHAO Liming, SUN Yongwen, FAN Lixin, et al. Evaluation methods for digital filtering effect of gamma ray logging signal[J]. Petroleum Instruments, 2007, 21(6): 40–43.
|
[40] |
QIU Yang, HU Xiaodong, ZHOU Fujian, et al. Water hammer response characteristics of wellbore-fracture system: multi-dimensional analysis in time, frequency and quefrency domain[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110425. doi: 10.1016/j.petrol.2022.110425
|
[41] |
周福建,胡晓东,丘阳,等. 基于水击压力波信号进行压裂诊断的系统和压裂诊断方法:CN202010254265. X[P]. 2020-08-18.
ZHOU Fujian, HU Xiaodong, QIU Yang, et al. The method and system of fracturing diagnosis using water hammer signal: CN202010254265. X[P]. 2020-08-18.
|
[42] |
KORKIN R, PARKHONYUK S, FEDOROV A, et al. High frequency pressure monitoring and data analytics for stimulation efficiency determination: new perspectives or potential limits[R]. SPE 199762, 2020.
|
1. |
李斌会,邓森,张江,曹胜,郭天娇,徐全,霍迎冬. 古龙页岩油高温高压注CO_2驱动用效果. 大庆石油地质与开发. 2024(01): 42-51 .
![]() | |
2. |
姚红生,高玉巧,郑永旺,邱伟生,龚月,钱洋慧. CO_2快速吞吐提高页岩油采收率现场试验. 天然气工业. 2024(03): 10-19 .
![]() | |
3. |
李阳,曹小朋,赵清民,刘祖鹏,薛兆杰,蒋龙. 济阳坳陷陆相断陷盆地页岩油开发的几点思考. 石油钻探技术. 2024(04): 1-7 .
![]() | |
4. |
吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术. 石油钻探技术. 2024(04): 87-93 .
![]() | |
5. |
李邦国,侯家鵾,雷兆丰,张博,王斌,陈江. 超临界CO_2萃取页岩油效果评价及影响因素分析. 石油钻探技术. 2024(04): 94-103 .
![]() | |
6. |
陈洪才,王彪,李太伟,张鑫,朱杰,戴志鹏,孙敬,李思辰. 在线核磁监测法优化裂缝性页岩油藏赋能渗吸吞吐工艺. 石油钻采工艺. 2024(02): 228-237 .
![]() | |
7. |
马先林,刘朕之,湛杰,潘晓甜,李成德. 基于物理信息神经网络的CO_2羽流分布预测方法. 石油钻探技术. 2024(05): 69-75 .
![]() | |
8. |
黄千慧,李海波,杨正明,邢济麟,陈波,李杰,薛伟,姚兰兰,杜猛,孟焕. 页岩(致密)油藏注CO_2吞吐作用距离实验. 大庆石油地质与开发. 2024(06): 128-135 .
![]() | |
9. |
张岩,冯海顺,翟勇,周晓梅,刘东青,王坤. 低渗透稠油油藏CO_2压驱提高采收率机理及规律研究. 石油钻探技术. 2024(06): 97-106 .
![]() | |
10. |
张磊,于海洋,黄涛,唐慧婷,孙灵辉,曾华柯,汪洋. CO_2吞吐提高其埋存率及页岩油采收率的影响因素. 华南师范大学学报(自然科学版). 2024(05): 16-26 .
![]() | |
11. |
刘雨奇,陈哲伟,雷启鸿,徐振华,罗二辉,雷征东,熊维亮,何右安. 庆城页岩油后期补能注伴生气吞吐注采参数优化. 科学技术与工程. 2023(12): 5033-5040 .
![]() | |
12. |
饶志华,邓成辉,马倩芸,武广瑷,武治强,程小伟. CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响. 钻井液与完井液. 2023(04): 495-501 .
![]() | |
13. |
张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 .
![]() | |
14. |
杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 .
![]() |