Citation: | DAI Yifan, HOU Bing, LIAO Zhihao. Simulation of hydraulic fracturing in deep hot dry rock reservoir based on phase-field method [J]. Petroleum Drilling Techniques,2024, 52(2):229-235. DOI: 10.11911/syztjs.2024047 |
In order to study the hydraulic fracture initiation and propagation mechanisms in deep hot dry rock (HDR) reservoirs, a fluid-solid-heat coupling numerical model for fracture propagation simulation was established based on the phase-field method. This model was used to analyze the mechanical behavior of hydraulic fracture propagation in HDR reservoirs, as well as the effects of factors such as temperature, pump rate, and natural fractures on the hydraulic fracture propagation. The results show that this fluid-solid-heat coupling numerical model has a relatively simple criterion with high calculation accuracy. During the process of hydraulic fracturing in HDR reservoirs, thermal stress acts as tensile stress, which contributes to increasing fracture aperture and facilitating fracture propagation. The larger temperature difference between fracturing fluid and formation, and the higher pumping rates, the more significant effect of the thermal stress. After encountering natural fractures, hydraulic fractures will communicate and initiate those natural fractures, and the re-initiation of fractures is controlled by in-situ stress and natural fractures. The findings of this study can provide a good reference for guiding hydraulic fracturing in deep HDR reservoirs.
[1] |
陈作,许国庆,蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术,2019,47(6):1–8.
CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8.
|
[2] |
谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术,2020,48(3):77–84.
XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84.
|
[3] |
BUJAKOWSKI W, BARBACKI A, MIECZNIK M, et al. Modelling geothermal and operating parameters of EGS installations in the Lower Triassic sedimentary formations of the central Poland area[J]. Renewable Energy, 2015, 80: 441–453. doi: 10.1016/j.renene.2015.02.018
|
[4] |
思娜,叶海超,牛新明,等. 油气钻井技术在干热岩开发中的适应性分析[J]. 石油钻探技术,2019,47(4):35–40. doi: 10.11911/syztjs.2019042
SI Na, YE Haichao, NIU Xinming, et al. Analysis on the adaptability of oil and gas drilling technologies in development for hot dry rocks[J]. Petroleum Drilling Techniques, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042
|
[5] |
曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术,2015,43(2):1–7.
ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
|
[6] |
陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82–87.
CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82–87.
|
[7] |
杨英涛,温庆志,段晓飞,等. 通道压裂裂缝导流能力数值模拟研究[J]. 石油钻探技术,2016,44(6):104–110.
YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, et al. Numerical simulation for flow conductivity in channeling fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104–110.
|
[8] |
KOLAWOLE O, ISPAS I. Interaction between hydraulic fractures and natural fractures: current status and prospective directions[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(4): 1613–1634. doi: 10.1007/s13202-019-00778-3
|
[9] |
WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074 )[J]. Journal of Petroleum Technology, 1987, 39(2): 209–220. doi: 10.2118/13224-PA
|
[10] |
朱万成,魏晨慧,田军,等. 岩石损伤过程中的热–流–力耦合模型及其应用初探[J]. 岩土力学,2009,30(12):3851–3857.
ZHU Wancheng, WEI Chenhui, TIAN Jun, et al. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application[J]. Rock and Soil Mechanics, 2009, 30(12): 3851–3857.
|
[11] |
GHASSEMI A, ZHANG Q. A transient fictitious stress boundary element method for porothermoelastic media[J]. Engineering Analysis with Boundary Elements, 2004, 28(11): 1363–1373. doi: 10.1016/j.enganabound.2004.05.003
|
[12] |
金泰宇. 三维粗糙裂缝网络钻井液漏失流固耦合模型研究[J]. 石油钻探技术,2024,52(1):69–77.
JIN Taiyu. Study on three-dimensional fluid-solid coupling model of drilling fluid leakage in rough fracture network[J]. Petroleum Drilling Techniques, 2024, 52(1): 69–77.
|
[13] |
张文平,许争鸣,吕泽昊,等. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究[J]. 石油钻探技术,2023,51(5):96–105.
ZHANG Wenping, XU Zhengming, LYU Zehao, et al. Research on a transient flow heat transfer model of gas-liquid-solid three-phase flow for unbalanced drilling in deep shale wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 96–105.
|
[14] |
李浩,徐怀民,王千军,等. 准东地区平地泉组微量元素地球化学特征及油气地质意义[J]. 断块油气田,2023,30(2):277–285.
LI Hao, XU Huaimin, WANG Qianjun, et al. Geochemical characteristics and petroleum geological significance of trace elements of Pingdiquan Formation in eastern Junggar Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 277–285.
|
[15] |
HUANG Liuke, HE Rui, YANG Zhaozhong, et al. Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation[J]. Engineering Fracture Mechanics, 2023, 278: 109020. doi: 10.1016/j.engfracmech.2022.109020
|
[16] |
彭井宏,周军,胡承强,等. 热力耦合作用下地下盐岩储气库注采运行稳定性研究[J]. 断块油气田,2023,30(5):858–867.
PENG Jinghong, ZHOU Jun, HU Chengqiang, et al. Study on the injection-production stability of underground salt rock gas storage under thermo-mechanical coupling[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 858–867.
|
[17] |
李文拓,罗鸣,黄洪林,等. 高温高压小井眼水平井环空ECD综合计算模型[J]. 石油钻采工艺,2023,45(3):259–268.
LI Wentuo, LUO Ming, HUANG Honglin, et al. Comprehensive calculation model of annular ECD for high-temperature high-pressure slim-hole horizontal wells[J]. Oil Drilling & Production Technology, 2023, 45(3): 259–268.
|
[18] |
HOFMANN H, BABADAGLI T, ZIMMERMANN G. Hot water generation for oil sands processing from enhanced geothermal systems: process simulation for different hydraulic fracturing scenarios[J]. Applied Energy, 2014, 113: 524–547. doi: 10.1016/j.apenergy.2013.07.060
|
[19] |
ZHANG Yanjun, GUO Liangliang, LI Zhengwei, et al. Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: different reservoir stimulation strategies for tight rock and naturally fractured formations[J]. Energy, 2015, 93(Part 2): 1860-1885.
|
[20] |
谢紫霄,黄中伟,熊建华,等. 天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(4):63–72.
XIE Zixiao, HUANG Zhongwei, XIONG Jianhua, et al. Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 63–72.
|
[21] |
易良平,胡滨,李小刚,等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报,2020,45(增刊2):706–716.
YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(supplement 2): 706–716.
|
[22] |
路千里. 基于相场法的页岩水力压裂裂缝扩展规律研究[D]. 成都:西南石油大学,2018.
LU Qianli. Fracture propagation modelling of shale hydraulic fracturing based on phase field method[D]. Chengdu: Southwest Petroleum University, 2018.
|
[23] |
侯冰,戴一凡,范濛,等. 基于相场法的酸压裂缝连通孔洞数值模拟[J]. 石油学报,2022,43(6):849–859.
HOU Bing, DAI Yifan, FAN Meng, et al. Numerical simulation of pores connection by acid fracturing based on phase field method[J]. Acta Petrolei Sinica, 2022, 43(6): 849–859.
|
[24] |
NOII N, FAN Meng, WICK T, et al. A quasi-monolithic phase-field description for orthotropic anisotropic fracture with adaptive mesh refinement and primal–dual active set method[J]. Engineering Fracture Mechanics, 2021, 258: 108060. doi: 10.1016/j.engfracmech.2021.108060
|
[25] |
NOII N, WICK T. A phase-field description for pressurized and non-isothermal propagating fractures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351: 860–890. doi: 10.1016/j.cma.2019.03.058
|
[26] |
HEISTER T, WICK T. Pfm-cracks: A parallel-adaptive framework for phase-field fracture propagation[J]. Software Impacts, 2020, 6: 100045. doi: 10.1016/j.simpa.2020.100045
|
[27] |
TRANTER C J. The opening of a pair of coplanar Griffith cracks under internal pressure[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1961, 14(3): 283–292. doi: 10.1093/qjmam/14.3.283
|
[28] |
周舟,金衍,卢运虎,等. 干热岩地热储层钻井和水力压裂工程技术难题和攻关建议[J]. 中国科学:物理学 力学 天文学,2018,48(12):124621.
ZHOU Zhou, JIN Yan, LU Yunhu, et al. Present challenge and prospects of drilling and hydraulic fracturing technology for hot dry rock geothermal reservoir[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(12): 124621.
|
[29] |
周舟,金衍,曾义金,等. 青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究[J]. 吉林大学学报(地球科学版),2019,49(5):1425–1430.
ZHOU Zhou, JIN Yan, ZENG Yijin, et al. Experimental study on hydraulic fracturing physics simulation, crack initiation and propagation in hot dry rock geothermal reservoir in Gonghe Basin, Qinghai[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1425–1430.
|
1. |
黄梁帅. 超深强底水断溶体油藏精细注水技术优化. 粘接. 2024(08): 126-129 .
![]() | |
2. |
陈方方,彭得兵,王娜,王张恒,曾其信. 英买2缝洞型油藏注水及注气提高采收率研究. 西南石油大学学报(自然科学版). 2024(04): 149-158 .
![]() | |
3. |
佘治成,陈利新,徐三峰,肖云,张键. 缝洞型碳酸盐岩油藏注氮气提高采收率技术. 西南石油大学学报(自然科学版). 2024(04): 138-148 .
![]() | |
4. |
刘盈,黄雪莉,张宵宁,代真真,李婷婷. 耐温抗盐堵剂研究及其结构性能表征. 应用化工. 2023(12): 3392-3396 .
![]() | |
5. |
葛丽珍,王公昌,张瑞,张烈,张俊廷. 渤海S油田高含水期强水淹层避射原则研究. 石油钻探技术. 2022(03): 106-111 .
![]() | |
6. |
郑松青,康志江,程晓军,李小波,张世亮,崔书岳,蒋林. 塔河油田缝洞型碳酸盐岩油藏水驱开发特征及改善对策. 油气地质与采收率. 2022(06): 95-104 .
![]() |