YU Ruifeng, DIAO Binbin, GAO Deli. Calculation for wellbore trajectory measurement error incorporating magnetic azimuth correction [J]. Petroleum Drilling Techniques,2023, 51(6):25-31. DOI: 10.11911/syztjs.2023056
Citation: YU Ruifeng, DIAO Binbin, GAO Deli. Calculation for wellbore trajectory measurement error incorporating magnetic azimuth correction [J]. Petroleum Drilling Techniques,2023, 51(6):25-31. DOI: 10.11911/syztjs.2023056

Calculation for Wellbore Trajectory Measurement Error Incorporating Magnetic Azimuth Correction

More Information
  • Received Date: April 12, 2022
  • Revised Date: May 22, 2023
  • Available Online: June 06, 2023
  • With the popularization and application of horizontal wells, cluster wells, and other technologies, higher precision of wellbore azimuth angle measurement is required. Under the condition of magnetic interference, multi-station analysis (MSA) is an effective method for correcting the magnetic azimuth and improving the precision of wellbore trajectory measurement. Compared with the existing error calculation model of wellbore trajectory measurement that only considers the axial magnetic interference correction, MSA considers both the axial magnetic interference and error source correction of the sensor. Therefore, it is necessary to establish an error calculation model of wellbore trajectory measurement suitable for MSA. Based on the error model and covariance propagation rate of the sensor, the weight function of the error source with the directly measured parameters as the independent variables was derived, and an error calculation model of wellbore trajectory measurement incorporating magnetic azimuth correction was established. The influence law of the precision of geomagnetic reference fields on wellbore trajectory errors after magnetic azimuth correction was revealed. The results show that the wellbore trajectory measurement error after magnetic azimuth correction increases with the decrease in the precision of geomagnetic reference fields. It is of practical significance for improving the precision of magnetic azimuth measurement and reducing wellbore trajectory measurement errors by adopting a high-precision geomagnetic model for magnetic azimuth correction.

  • [1]
    范光第,蒲文学,赵国山,等. 磁力随钻测斜仪轴向磁干扰校正方法[J]. 石油钻探技术,2017,45(4):121–126. doi: 10.11911/syztjs.201704021

    FAN Guangdi, PU Wenxue, ZHAO Guoshan, et al. Correction methods for axial magnetic interference of the magnetic inclinometer while drilling[J]. Petroleum Drilling Techniques, 2017, 45(4): 121–126. doi: 10.11911/syztjs.201704021
    [2]
    许昊东,黄根炉,张然,等. 磁力随钻测量磁干扰校正方法研究[J]. 石油钻探技术,2014,42(2):102–106.

    XU Haodong, HUANG Genlu, ZHANG Ran, et al. Method of magnetic interference correction in survey with magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102–106.
    [3]
    KABIRZADEH H, RANGELOVA E, LEE G H, et al. Dynamic error analysis of measurement while drilling using variable geomagnetic in-field referencing[J]. SPE Journal, 2018, 23(6): 2327–2338. doi: 10.2118/188653-PA
    [4]
    孟卓然. BHA轴向磁干扰对方位测量误差的影响:基于人工磁场模拟方法[J]. 石油学报,2020,41(8):1011–1018. doi: 10.7623/syxb202008010

    MENG Zhuoran. Effect of BHA axial magnetic interference on the azimuth measurement error: a simulation method based on artificial magnetic field[J]. Acta Petrolei Sinica, 2020, 41(8): 1011–1018. doi: 10.7623/syxb202008010
    [5]
    刘建光,底青云,张文秀. 基于多测点分析法的水平井高精度磁方位校正方法[J]. 地球物理学报,2019,62(7):2759–2766. doi: 10.6038/cjg2019M0035

    LIU Jianguang, DI Qingyun, ZHANG Wenxiu. High precision magnetic azimuth correction of horizontal well by multi-station analysis[J]. Chinese Journal of Geophysics, 2019, 62(7): 2759–2766. doi: 10.6038/cjg2019M0035
    [6]
    原雨佳. MEMS磁力计补偿校正技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.

    YUAN Yujia. Research on compensation and calibration technology of MEMS magnetometer[D]. Harbin: Harbin Engineering University, 2020.
    [7]
    孟庆威,姜天杰,刘泳敬,等. 基于有限元分析的方位角误差计算和修正[J]. 石油钻探技术,2022,50(3):66–73. doi: 10.11911/syztjs.2022031

    MENG Qingwei, JIANG Tianjie, LIU Yongjing, et al. Calculation and correction of azimuth errors based on finite element analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66–73. doi: 10.11911/syztjs.2022031
    [8]
    蒲文学,范光第,朱建建,等. 磁性随钻测斜仪所需无磁钻具长度及影响因素研究[J]. 石油钻探技术,2022,50(4):129–134. doi: 10.11911/syztjs.2022090

    PU Wenxue, FAN Guangdi, ZHU Jianjian, et al. Research on the length of non-magnetic drilling tools for magnetic inclinometer while drilling and its influence factors[J]. Petroleum Drilling Techniques, 2022, 50(4): 129–134. doi: 10.11911/syztjs.2022090
    [9]
    WILLIAMSON H S. Accuracy prediction for directional measurement while drilling[J]. SPE Drilling & Completion, 2000, 15(4): 221–233.
    [10]
    许昊东. 井眼轨迹校正方法研究及误差椭球计算[D]. 青岛: 中国石油大学(华东), 2014.

    XU Haodong. Research on the correction methods of borehole trajectory and calculation of error ellipsoid[D]. Qingdao: China University of Petroleum(East China), 2014.
    [11]
    BROOKS A G,GURDEN P A,NOY K A.Practical application of a multiple-survey magnetic correction algorithm[R].SPE 49060, 1998.
    [12]
    HANAK F C, WILSON H, GJERTSEN M. Assessment of the validity of MWD survey accuracy following multistation analysis[R]. SPE 173098, 2015.
    [13]
    NYRNES E, TORKILDSEN T, WILSON H. Minimum requirements for multi-station analysis of MWD magnetic directional surveys[R]. SPE 125677, 2009.
    [14]
    NYRNES E, TORKILDSEN T, NAHAVANDCHI H, et al. Error properties of magnetic directional surveying data[R]. SPWLA-2005-G, 2005.
    [15]
    EKSETH R, KOVALENKO K, WESTON J L, et al. The reliability problem related to directional survey data[R]. SPE 103734, 2006.
    [16]
    EKSETH R, TORKILDSEN T, BROOKS A, et al. High-integrity wellbore surveys: Methods for eliminating gross errors[R]. SPE 105558, 2007.
    [17]
    ISCWSA. Introduction to wellbore positioning[M/OL]. University of the Highlands and Islands, 2017. [2022 − 04 − 13]. https://www.uhi.ac.uk/en/wellbore-positioning-download/.
    [18]
    胡小工. 空间测量技术的数据处理精度评估和残差统计分析[D]. 上海: 中国科学院上海天文台, 1999.

    HU Xiaogong. The precision assessment and statistical analysis of the post-fit residuals in data reduction of space geodesy[D]. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 1999.
    [19]
    陶本藻, 邱卫宁, 姚宜斌. 误差理论与测量平差基础[M]. 王建国, 邱卫宁, 姚宜斌, 等译. 武汉: 武汉大学出版社, 2019: 32-35.

    TAO Benzao, QIU Weining, YAO Yibin. Error theory and foundation of surveying adjustment[M]. WANG Jianguo, QIU Weining, YAO Yibin, et al, translated. Wuhan: Wuhan University Press, 2019: 32-35.
    [20]
    陆欣,刘忠,张宏欣,等. 三轴MEMS加速度计的最大似然校正算法[J]. 国防科技大学学报,2017,39(5):185–191. doi: 10.11887/j.cn.201705029

    LU Xin, LIU Zhong, ZHANG Hongxin, et al. Maximum likelihood calibration for MEMS triaxial accelerometer[J]. Journal of National University of Defense Technology, 2017, 39(5): 185–191. doi: 10.11887/j.cn.201705029
  • Related Articles

    [1]ZENG Yijin, WANG Minsheng, GUANG Xinjun, WANG Guo, ZHANG Hongbao, CHEN Zengwei, DUAN Jinan. Progress and Prospects of Sinopec’s Intelligent Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 1-9. DOI: 10.11911/syztjs.2024081
    [2]WANG Zhizhan. Thoughts for New Progress and Development Directions of Sinopec’s Surface Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(4): 124-133. DOI: 10.11911/syztjs.2023027
    [3]YUAN Jianqiang. New Progress and Development Proposals of Sinopec’s Drilling Technologies for Ultra-Long Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81-87. DOI: 10.11911/syztjs.2023030
    [4]ZENG Yijin. Novel Advancements and Development Suggestions of Cementing Technologies for Deep and Ultra-Deep Wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66-73. DOI: 10.11911/syztjs.2023035
    [5]ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072
    [6]LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046
    [7]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [8]DING Shidong, ZHAO Xiangyang. New Progress and Development Suggestions for Drilling and Completion Technologies in Sinopec Key Exploration Areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11-20. DOI: 10.11911/syztjs.2020069
    [9]LU Baoping, DING Shidong. New Progress and Development Prospect in Shale Gas Engineering Technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. DOI: 10.11911/syztjs.2018001
    [10]Lu Baoping. Sinopec Engineering Technical Advance and Its Developing Tendency in Shale Gas[J]. Petroleum Drilling Techniques, 2013, 41(5): 1-8. DOI: 10.3969/j.issn.1001-0890.2013.05.001
  • Cited by

    Periodical cited type(9)

    1. 李新发,李婷,刘博峰,张峰,肖志明,王浩帆. 基于压裂监测的致密储层甜点识别. 断块油气田. 2020(05): 603-607 .
    2. 冯福平,黄芮,雷扬,GUO Boyun,胡超洋,王胡振. 基于能量理论的体积压裂工程改造效果评价模型及应用. 中国石油大学学报(自然科学版). 2019(01): 81-89 .
    3. 田林海,屈刚,雷鸣,于德成,张伟. 玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨. 石油钻探技术. 2019(01): 20-24 . 本站查看
    4. 刘子雄,王艳红,高杰,冯青,樊爱彬. 基于压裂返排数据的有效破裂体积计算方法. 石油地质与工程. 2019(02): 112-115 .
    5. 魏旭,张永平,尚立涛,王海涛,吴森昊. 多段多簇压裂储层改造效果影响因素分析. 油气地质与采收率. 2018(02): 96-102+114 .
    6. 修乃岭,严玉忠,管保山,王欣,王臻,严星明. 基于物质平衡原理对页岩气压裂储层有效改造体积进行估算方法研究. 石油地质与工程. 2018(06): 103-105 .
    7. 白晓虎,苏良银,赵伯平,达引朋,吴甫让,段鹏辉. 注采井网条件下水平井体积压裂重复改造优化设计. 断块油气田. 2017(02): 194-198 .
    8. 隋阳,刘建伟,郭旭东,向洪,王波,王涛. 体积压裂技术在红台低含油饱和度致密砂岩油藏的应用. 石油钻采工艺. 2017(03): 349-355 .
    9. 于永军,朱万成,李连崇,魏晨慧,代风,刘书源,王卫东. 水力压裂裂缝相互干扰应力阴影效应理论分析. 岩石力学与工程学报. 2017(12): 2926-2939 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (248) PDF downloads (98) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return