JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
Citation: JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024

Advancements and Considerations of Chemo-Mechanical Coupling for Wellbore Stability in Deep Hard Brittle Shale

More Information
  • Received Date: December 18, 2022
  • Revised Date: February 12, 2023
  • Available Online: February 23, 2023
  • The oil and gas resources from deep and ultra-deep reservoirs in China are the most important target of exploration and development. However, pervasive and ubiquitous wellbore instability in hard brittle deep shale seriously compromises the efficient development of deep and ultra-deep oil and gas resources. Wellbore instability in deep hard brittle shale under the chemo-mechanical coupling is a complicated problem involving multi-scale evolution among micro-scale, meso-scale and macro-scale. The basic principle of wellbore instability in hard brittle shale under chemo-mechanical coupling was briefly introduced. In addition, the previous studies on the mechanism between hard brittle shale and drilling fluid, quantitative description of the evolution of damage in mesocosm structures, macroscopic mechanical deterioration of shale after hydration, and quantitative analysis of wellbore stability, were reviewed in terms of micro-scale, meso-scale and macro-scale. Moreover, a new idea was proposed for wellbore stability in hard brittle shale from the perspective of fracture mechanics considering chemical effects.

  • [1]
    陈勉,金衍. 深井井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2005,33(5):28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    CHEN Mian, JIN Yan. Advances and developmental trend of the wall stability technique[J]. Petroleum Drilling Techniques, 2005, 33(5): 28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007
    [2]
    曾义金,刘建立. 深井超深井钻井技术现状和发展趋势[J]. 石油钻探技术,2005,33(5):1–5.

    ZENG Yijin, LIU Jianli. Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2005, 33(5): 1–5.
    [3]
    徐同台. 井壁稳定技术研究现状及发展方向[J]. 钻井液与完井液,1997,14(4):36–43.

    XU Tongtai. On wellbore stability technology[J]. Drilling Fluid & Completion Fluid, 1997, 14(4): 36–43.
    [4]
    邓虎,孟英峰. 泥页岩稳定性的化学与力学耦合研究综述[J]. 石油勘探与开发,2003,30(1):109–111.

    DENG Hu, MENG Yingfeng. A discussion on shale stability coupling with mechanics and chemistry[J]. Petroleum Exploration and Development, 2003, 30(1): 109–111.
    [5]
    徐四龙,余维初,张颖. 泥页岩井壁稳定的力学与化学耦合(协同)作用研究进展[J]. 石油天然气学报,2014,36(1):151–153.

    XU Silong, YU Weichu, ZHANG Ying. Research progress of mechanic and chemical coupling for shale wellbore stability[J]. Journal of Oil and Gas Technology, 2014, 36(1): 151–153.
    [6]
    ZHANG Yayun, GAO Shuyang, DU Xiaoyu, et al. Molecular dynamics simulation of strength weakening mechanism of deep shale[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106123. doi: 10.1016/j.petrol.2019.05.074
    [7]
    SKIPPER N T, REFSON K, MCCONNELL J D C. Computer simulation of interlayer water in 2∶1 clays[J]. The Journal of Chemical Physics, 1991, 94(11): 7434–7445. doi: 10.1063/1.460175
    [8]
    BOEK E S, COVENEY P V, SKIPPER N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor[J]. Journal of the American Chemical Society, 1995, 117(50): 12608–12617. doi: 10.1021/ja00155a025
    [9]
    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium-montmorillonite hydrates[J]. Langmuir, 1998, 14(5): 1201–1207. doi: 10.1021/la9704720
    [10]
    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates[J]. Langmuir, 1997, 13(7): 2074–2082. doi: 10.1021/la9603176
    [11]
    CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734–2741. doi: 10.1021/la00007a064
    [12]
    徐加放,付元强,田太行,等. 蒙脱石水化机理的分子模拟[J]. 钻井液与完井液,2012,29(4):1–4.

    XU Jiafang, FU Yuanqiang, TIAN Taihang, et al. Molecular simulation on mechanism of montmorillonite hydration[J]. Drilling Fluid & Completion Fluid, 2012, 29(4): 1–4.
    [13]
    YOUNG D A, SMITH D E. Simulations of clay mineral swelling and hydration:   Dependence upon interlayer ion size and charge[J]. The Journal of Physical Chemistry B, 2000, 104(39): 9163–9170. doi: 10.1021/jp000146k
    [14]
    王进,王军霞,曾凡桂. 钾基蒙脱石的分子力学和分子动力学模拟[J]. 硅酸盐学报,2009,37(4):554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    WANG Jin, WANG Junxia, ZENG Fangui. Simulation of molecular mechanics and molecular dynamics of potassium montmorillonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(4): 554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012
    [15]
    YOTSUJI K, TACHI Y, SAKUMA H, et al. Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments[J]. Applied Clay Science, 2021, 204: 106034. doi: 10.1016/j.clay.2021.106034
    [16]
    AKINWUNMI B, KPORHA F E A, HIRVI J T, et al. Atomistic simulations of the swelling behaviour of Na-montmorillonite in mixed NaCl and CaCl2 solutions[J]. Chemical Physics, 2020, 533: 110712. doi: 10.1016/j.chemphys.2020.110712
    [17]
    黄小娟,徐加放,丁廷稷,等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺,2017,39(4):442–448.

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4): 442–448.
    [18]
    PENG Chenliang, WANG Guanshi, QIN Lei, et al. Molecular dynamics simulation of NH4-montmorillonite interlayer hydration: Structure, energetics, and dynamics[J]. Applied Clay Science, 2020, 195: 105657. doi: 10.1016/j.clay.2020.105657
    [19]
    XIE Gang, XIAO Yurong, DENG Mingyi, et al. Investigation on the inhibition mechanism of alkyl diammonium as montmorillonite swelling inhibitor: experimental and molecular dynamics simulations[J]. Fuel, 2020, 282: 118841. doi: 10.1016/j.fuel.2020.118841
    [20]
    PENG Chenliang, WANG Guanshi, ZHANG Chunlei, et al. Molecular dynamics simulation of NH4+-smectite interlayer hydration: Influence of layer charge density and location[J]. Journal of Molecular Liquids, 2021, 336: 116232. doi: 10.1016/j.molliq.2021.116232
    [21]
    刘星雨,马超,谢龙龙,等. 甲酸钾抑制蒙脱石水化机理的分子动力学模拟[J]. 钻井液与完井液,2022,39(4):415–422.

    LIU Xingyu, MA Chao, XIE Longlong, et al. Molecular dynamics simulation of potassium formate’s ability to inhibit hydration of montmorillonite[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 415–422.
    [22]
    徐加放,顾甜甜,沈文丽,等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版),2016,40(2):83–90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 83–90.
    [23]
    HAN Zongfang, CUI Yang, MENG Qi, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: a molecular dynamics study[J]. Chemical Physics Letters, 2021, 781: 138982. doi: 10.1016/j.cplett.2021.138982
    [24]
    DRITS V A, ZVIAGINA B B, MCCARTY D K, et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist, 2010, 95(2/3): 348–361.
    [25]
    王冠,李桂臣,孙元田,等. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技,2017(3):16–22.

    WANG Guan, LI Guichen, SUN Yuantian, et al. Study on molecular simulation of illite on hydration mechanism and water absorption behavior[J]. Coal Science & Technology Magazine, 2017(3): 16–22.
    [26]
    刘勇,周国庆,况联飞. 常温与低温下的伊利石水化性能分子动力学模拟[J]. 煤炭技术,2018,37(10):353–356.

    LIU Yong, ZHOU Guoqing, KUANG Lianfei. Molecular dynamics simulation of hydration properties of illite at normal and low temperatures[J]. Coal Technology, 2018, 37(10): 353–356.
    [27]
    刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81–89.

    LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 81–89.
    [28]
    GHASEMI M, SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2021, 335: 116188. doi: 10.1016/j.molliq.2021.116188
    [29]
    CHEN Jun, MIN Fanfei, LIU Lingyun, et al. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations[J]. Applied Surface Science, 2019, 476: 6–15. doi: 10.1016/j.apsusc.2019.01.081
    [30]
    CHEN Zhongcun, ZHAO Yaolin, XU Xuewen, et al. Structure and dynamics of Cs+ in kaolinite: insights from molecular dynamics simulations[J]. Computational Materials Science, 2020, 171: 109256. doi: 10.1016/j.commatsci.2019.109256
    [31]
    CHANG Ming, MA Xiaomin, FAN Yuping, et al. Adsorption of different valence metal cations on kaolinite: results from experiments and molecular dynamics simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656(Part A): 130330.
    [32]
    ZHENG Y, ZAOUI A. Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23): 5994–6001. doi: 10.1016/j.physa.2013.07.019
    [33]
    CAMARA M, XU Jiafang, WANG Xiaopu, et al. Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure[J]. Applied Clay Science, 2017, 146: 206–215. doi: 10.1016/j.clay.2017.05.045
    [34]
    张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018,46(10):1489–1498.

    ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489–1498.
    [35]
    况联飞,周国庆,商翔宇,等. 钠蒙脱土晶层间水分子结构分子动力学模拟[J]. 煤炭学报,2013,38(3):418–423.

    KUANG Lianfei, ZHOU Guoqing, SHANG Xiangyu, et al. Molecular dynamic simulation of interlayer water structure in Na-montmorillonite[J]. Journal of China Coal Society, 2013, 38(3): 418–423.
    [36]
    PENG Jianfei, YI Hao, SONG Shaoxian, et al. Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: a molecular dynamic study[J]. Results in Physics, 2019, 12: 113–117. doi: 10.1016/j.rinp.2018.11.011
    [37]
    石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34.

    SHI Bingzhong, XIA Bairu. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.
    [38]
    石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.1038/aps.2011.157

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.1038/aps.2011.157
    [39]
    马天寿,陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发,2014,41(2):227–233.

    MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227–233.
    [40]
    林永学,高书阳,曾义金. 基于层析成像技术的页岩微裂缝扩展规律研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114606.

    LIN Yongxue, GAO Shuyang, ZENG Yijin. Study of shale micro-fracture propagation based on tomographic technique[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114606.
    [41]
    ZHANG Shifeng, SHENG J J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 1–7. doi: 10.1016/j.ijrmms.2017.03.011
    [42]
    贾利春,张超平,周井红. 结合CT技术的页岩水化损伤规律研究[J]. 断块油气田,2017,24(2):214–217.

    JIA Lichun, ZHANG Chaoping, ZHOU Jinghong. Hydration damage characteristics of shale by using CT scanning technology[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 214–217.
    [43]
    高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术,2018,46(3):20–26.

    GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new method for evaluating the characteristics of hydration in the Longmaxi shale gas reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.
    [44]
    WANG Qing, LYU Chaohui, COLE D R. Effects of hydration on fractures and shale permeability under different confining pressures: An experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 176: 745–753. doi: 10.1016/j.petrol.2019.01.068
    [45]
    王良,马辉运,韩慧芬,等. 长宁区块页岩水化起裂机理及应用[J]. 钻采工艺,2020,43(增刊1):27–30.

    WANG Liang, MA Huiyun, HAN Huifen, et al. Mechanism of shale hydration cracking and application at Changning Block[J]. Drilling & Production Technology, 2020, 43(supplement1): 27–30.
    [46]
    曾凡辉,张蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征:以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业,2020,40(10):66–75.

    ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: a case study of Longmaxi Formation shale in the Changning Area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66–75.
    [47]
    朱宝龙,李晓宁,巫锡勇,等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报,2015,34(增刊2):3896–3905.

    ZHU Baolong, LI Xiaoning, WU Xiyong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(supplement2): 3896–3905.
    [48]
    刘敬平,孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液,2016,33(3):25–29.

    LIU Jingping, SUN Jinsheng. Borehole wall collapse and control in shale gas well drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 25–29.
    [49]
    刘向君,熊健,梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版),2016,38(3):178–186.

    LIU Xiangjun, XIONG Jian, LIANG Lixi. Hydration experiment of hard brittle shale of the Longmaxi Formation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 178–186.
    [50]
    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Experimental study on hydration damage mechanism of shale from the Longmaxi Formation in southern Sichuan Basin, China[J]. Petroleum, 2016, 2(1): 54–60. doi: 10.1016/j.petlm.2016.01.002
    [51]
    WANG Yuepeng, LIU Xiangjun, LIANG Lixi, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103
    [52]
    卢运虎,梁川,金衍,等. 高温下页岩水化损伤的各向异性实验研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114614.

    LU Yunhu, LIANG Chuan, JIN Yan, et al. Experimental study on hydration damage of anisotropic shale under high temperature[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114614.
    [53]
    LU Yunhu, ZENG Lingping, JIN Yan, et al. Effect of shale anisotropy on hydration and its implications for water uptake[J]. Energies, 2019, 12(22): 4225. doi: 10.3390/en12224225
    [54]
    薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16
    [55]
    隋微波,田英英,姚晨昊. 页岩水化微观孔隙结构变化定点观测实验[J]. 石油勘探与开发,2018,45(5):894–901.

    SUI Weibo, TIAN Yingying, YAO Chenhao. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development, 2018, 45(5): 894–901.
    [56]
    吴小林,刘向君. 泥页岩水化过程中声波时差变化规律研究[J]. 西南石油大学学报,2007,29(增刊2):57–60.

    WU Xiaolin, LIU Xiangjun. The process and microscopic mechanism of shale hydration[J]. Journal of Southwest Petroleum University, 2007, 29(supplement2): 57–60.
    [57]
    王光兵,刘向君,梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程,2017,17(36):60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    WANG Guangbing, LIU Xiangjun, LIANG Lixi. Ultrasonic transmission experimental investigation on hydration of hard brittle shale[J]. Science Technology and Engineering, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010
    [58]
    王萍,屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687–693.

    WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3): 687–693.
    [59]
    钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.1016/S1876-3804(17)30070-8

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.1016/S1876-3804(17)30070-8
    [60]
    WANG Ping, QU Zhan, CHARALAMPIDOU E M. Shale hydration damage captured by nuclear magnetic resonance[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1129–1135. doi: 10.1080/01932691.2018.1496839
    [61]
    余致理,郭高峰,余恒,等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版),2022,37(1):44–50.

    YU Zhili, GUO Gaofeng, YU Heng, et al. Damage of hydration effect to micropore structure of shale[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(1): 44–50.
    [62]
    MA Tianshou, YANG Chunhe, CHEN Ping, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204–214. doi: 10.1016/j.jngse.2015.11.025
    [63]
    路保平,林永学,张传进. 水化对泥页岩力学性质影响的实验研究[J]. 地质力学学报,1999,5(1):65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    LU Baoping, LIN Yongxue, ZHANG Chuanjin. Laboratory study on effect of hydration to shale mechanics[J]. Journal of Geomechanics, 1999, 5(1): 65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011
    [64]
    黄进军,杨香丽,王福林,等. 处理剂对泥页岩抗压强度影响的实验研究[J]. 西南石油大学学报(自然科学版),2009,31(3):95–98.

    HUANG Jinjun, YANG Xiangli, WANG Fulin, et al. Experimental study on the effect of treatment agent on argillutits’ compressive strength[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(3): 95–98.
    [65]
    刘向君,刘洪,罗平亚,等. 钻井液浸泡对库车组泥岩强度的影响及应用研究[J]. 岩石力学与工程学报,2009,28(增刊2):3920–3925.

    LIU Xiangjun, LIU Hong, LUO Pingya, et al. Research on effect of drilling fluid on Kuqa shale strength behavior and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(supplement2): 3920–3925.
    [66]
    卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012
    [67]
    曹园,邓金根,蔚宝华,等. 深部泥页岩水化特性研究[J]. 科学技术与工程,2014,14(6):118–120.

    CAO Yuan, DENG Jingen, WEI Baohua, et al. Hydration properties research of deep formation shale[J]. Science Technology and Engineering, 2014, 14(6): 118–120.
    [68]
    向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验[J]. 断块油气田,2018,25(6):803–806.

    XIANG Chaogang, CHEN Junbin, YANG Gang. Experiment of brittle shale strength characteristics under drilling fluids soaking[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 803–806.
    [69]
    LYU Qiao, LONG Xinping, RANJITH P, et al. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids[J]. Engineering Geology, 2018, 233: 124–138. doi: 10.1016/j.enggeo.2017.12.002
    [70]
    ZHANG Qiangui, FAN Xiangyu, CHEN Ping, et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration[J]. Engineering Geology, 2020, 269: 105547. doi: 10.1016/j.enggeo.2020.105547
    [71]
    LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Rock mechanics and wellbore stability of deep shale during drilling and completion processes[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108882. doi: 10.1016/j.petrol.2021.108882
    [72]
    YEW C H, CHENEVERT M E, WANG C L, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311–316. doi: 10.2118/19536-PA
    [73]
    黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液,1995,12(3):15–21.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15–21.
    [74]
    MODY F K, HALE A H. Borehole-stability model to couple the mechanics and chemistry of drilling-fluid/shale interactions[J]. Journal of Petroleum Technology, 1993, 45(11): 1093–1101. doi: 10.2118/25728-PA
    [75]
    YU Mengjiao, CHENEVERT M E, SHARMA M M. Chemical-mechanical wellbore instability model for shales: accounting for solute diffusion[J]. Journal of Petroleum Science and Engineering, 2003, 38(3/4): 131–143.
    [76]
    金衍,陈勉. 水敏性泥页岩地层临界坍塌时间的确定方法[J]. 石油钻探技术,2004,32(2):12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    JIN Yan, CHEN Mian. A method for determining the critical time of wellbore instability at water-sensitive shale formations[J]. Petroleum Drilling Techniques, 2004, 32(2): 12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004
    [77]
    NGUYEN V X, ABOUSLEIMAN Y N. The porochemothermoelastic coupled solutions of stress and pressure with applications to wellbore stability in chemically active shale[R]. SPE 124422, 2009.
    [78]
    温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发,2014,41(6):748–754. doi: 10.11698/PED.2014.06.16

    WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16
    [79]
    MA Tianshou, CHEN Ping. A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 72–98. doi: 10.1016/j.jngse.2015.05.028
    [80]
    CHENG Wan, JIANG Guosheng, LI Xiaodong, et al. A porochemothermoelastic coupling model for continental shale wellbore stability and a case analysis[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106265. doi: 10.1016/j.petrol.2019.106265
    [81]
    ZHANG Shifeng, WANG Haige, QIU Zhengsong, et al. Calculation of safe drilling mud density window for shale formation by considering chemo-poro-mechanical coupling effect[J]. Petroleum Exploration and Development, 2019, 46(6): 1271–1280. doi: 10.1016/S1876-3804(19)60280-6
  • Related Articles

    [1]WANG Zhiyuan, LIU Hui, SUN Baojiang, LIU Hongtao, LOU Wenqiang. Numerical Study on Drilling Fluid Leakage under Fluid-Solid Coupling in Deep Fractured Gas Reservoir[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025031
    [2]LIAO Hualin, YIN Lu, SUN Feng, WEI Jun, YAN Hui, TENG Zhixiang. Experimental Study on Effect of Temperature and Cooling Method on Mechanical Parameters of Granite[J]. Petroleum Drilling Techniques, 2024, 52(6): 23-29. DOI: 10.11911/syztjs.2024067
    [3]JING Shuai, XIAO Li, ZHANG Haolin, WANG Xi, ZHANG Feifei. A Method for Minimizing Annulus Pressure Loss by means of Hole Cleaning and Hydraulics Coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56-62. DOI: 10.11911/syztjs.2020009
    [4]LI Ang, YANG Wanyou, DING Qianshen, KANG Shaofei, YANG Wei, WU Feipeng. Testing and Evaluation of Reinforced Reservoir Stimulations Using Composite Electrothermal-Chemical Shock Waves[J]. Petroleum Drilling Techniques, 2020, 48(1): 72-79. DOI: 10.11911/syztjs.2019129
    [5]DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010
    [6]XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
    [7]LIU Jinhua, LIU Sihai, LONG Daqing, CHEN Cengwei, JIN Ruihuan. Strengthening Plugging Operations by Combining Cross-Linked Film and Chemical Consolidation in Well Ming-1[J]. Petroleum Drilling Techniques, 2017, 45(2): 54-60. DOI: 10.11911/syztjs.201702009
    [8]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [9]Ma Yue, Chen Mian, Jin Yan, Hou Bing, Yang Pei. Mechanism of Effect of Relative Humidity on Creep Behavior of Gypsum Rock[J]. Petroleum Drilling Techniques, 2013, 41(4): 19-22. DOI: 10.3969/j.issn.1001-0890.2013.04.005
    [10]Lu Yunhu, Chen Mian, An Sheng. Brittle Shale Wellbore Fracture Propagation Mechanism[J]. Petroleum Drilling Techniques, 2012, 40(4): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.04.003

Catalog

    Article Metrics

    Article views (376) PDF downloads (157) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return