LIAO Hualin, YIN Lu, SUN Feng, et al. Experimental study on effect of temperature and cooling method on mechanical parameters of granite [J]. Petroleum Drilling Techniques, 2024, 52(6):23−29. DOI: 10.11911/syztjs.2024067
Citation: LIAO Hualin, YIN Lu, SUN Feng, et al. Experimental study on effect of temperature and cooling method on mechanical parameters of granite [J]. Petroleum Drilling Techniques, 2024, 52(6):23−29. DOI: 10.11911/syztjs.2024067

Experimental Study on Effect of Temperature and Cooling Method on Mechanical Parameters of Granite

More Information
  • Received Date: December 06, 2022
  • Revised Date: July 18, 2024
  • Available Online: July 28, 2024
  • While drilling of hot dry rock formations, drilling fluid may exert a cooling effect on the downhole rock at different temperatures, causing the changes of rock mechanical properties and failure modes. To investigate the influence of temperature and cooling on the mechanical parameters of hot rock, granite was studied. Acoustic and mechanical experiments were carried out on the heated samples (100–800 °C) after natural cooling and water cooling. The influence of temperature and cooling method on the mechanical parameters of granite was studied, such as acoustic wave velocity, compressive strength, elastic modulus, and Poisson’s ratio, etc. In addition, the macroscopic failure mechanism of rock under different treatment methods was analyzed. The results indicate that the mechanical parameters of granite gradually decrease when the temperature exceeds the critical threshold, with the most significant decrease of 23% occurring at 400 °C. The increase in temperature causes granite to exhibit ductile failure characteristics, resulting in a decrease in compressive strength. The compressive strength of granite decreases more significantly from 400 °C to 700 °C. The compressive strength of granite decreases by about 13% after water cooling compared to natural cooling. The study could provide a reference for the influence of drilling fluid cooling on mechanical parameters of rock and the calculation and analysis of formation parameters by acoustic logging in the drilling process of hot dry rock.

  • [1]
    陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82–87. doi: 10.11911/syztjs.2020098

    CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82–87. doi: 10.11911/syztjs.2020098
    [2]
    周舟,金衍,卢运虎,等. 干热岩地热储层钻井和水力压裂工程技术难题和攻关建议[J]. 中国科学:物理学 力学 天文学,2018,48(12):124621.

    ZHOU Zhou, JIN Yan, LU Yunhu, et al. Present challenge and prospects of drilling and hydraulic fracturing technology for hot dry rock geothermal reservoir[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2018, 48(12): 124621.
    [3]
    张所邦,宋鸿,陈兵,等. 中国干热岩开发与钻井关键技术[J]. 资源环境与工程,2017,31(2):202–207.

    ZHANG Suobang, SONG Hong, CHEN Bing, et al. The development and key drilling technology of hot dry rock in China[J]. Resources Environment & Engineering, 2017, 31(2): 202–207.
    [4]
    顾晓伟. 基于干热岩开采的高温水冷循环后花岗岩力学特性研究[D]. 徐州:中国矿业大学,2021.

    GU Xiaowei. Study on mechanical properties of granite after heating-cooling cycles based on hot dry rock mining[D]. Xuzhou: China University of Mining and Technology, 2021.
    [5]
    李骏,吴聃,范向红,等. 干热岩勘探开发及利用全球专利分析[J]. 世界石油工业,2024,31(3):100–108.

    LI Jun, WU Dan, FAN Xianghong, et al. Global patent analysis on exploration and development and utilization of hot dry rock[J]. World Petroleum Industry, 2024, 31(3): 100–108.
    [6]
    施山山,李宽,李小洋,等. 干热岩资源高效钻采技术理论探讨[J]. 钻探工程,2023,50(增刊1):121-125.

    SHI Shanshan, LI Kuan, LI Xiaoyang, et al. The theory discussion of high efficient drilling and development on the hot dry rock resource[J]. Drilling Engineering, 2023, 50(supplement 1): 121-125.
    [7]
    郤保平,赵金昌,赵阳升,等. 高温岩体地热钻井施工关键技术研究[J]. 岩石力学与工程学报,2011,30(11):2234–2243.

    XI Baoping, ZHAO Jinchang, ZHAO Yangsheng, et al. Key technologies of hot dry rock drilling during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2234–2243.
    [8]
    赵亚永,魏凯,周佳庆,等. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报,2017,36(1):142–151.

    ZHAO Yayong, WEI Kai, ZHOU Jiaqing, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 142–151.
    [9]
    薛超. 高温及干湿压处理后花岗岩的物理性质研究[J]. 山西建筑,2021,47(20):134–136.

    XUE Chao. Study on physical properties of granite after high temperature and dry wet compaction[J]. Shanxi Architecture, 2021, 47(20): 134–136.
    [10]
    卢运虎,王世永,陈勉,等. 高温热处理共和盆地干热岩力学特性实验研究[J]. 地下空间与工程学报,2020,16(1):114–121.

    LU Yunhu, WANG Shiyong, CHEN Mian, et al. Experimental study on mechanical properties of hot dry rock[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 114–121.
    [11]
    HUANG Yanhua, YANG Shengqi, TIAN Wenling, et al. Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment[J]. Archives of Civil and Mechanical Engineering, 2017, 17(4): 912–925. doi: 10.1016/j.acme.2017.03.007
    [12]
    YIN Tubing, SHU Ronghua, LI Xibing, et al. Combined effects of temperature and axial pressure on dynamic mechanical properties of granite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8): 2209–2219. doi: 10.1016/S1003-6326(16)64337-6
    [13]
    刘石,许金余,刘志群,等. 温度对岩石强度及损伤特性的影响研究[J]. 采矿与安全工程学报,2013,30(4):583–588.

    LIU Shi, XU Jinyu, LIU Zhiqun, et al. Temperature effect on strength and damage property of rock mass[J]. Journal of Mining and Safety Engineering, 2013, 30(4): 583–588.
    [14]
    LI Shujian, ZHANG Dongming, BAI Xin, et al. Experimental study on mechanical properties, acoustic emission energies and failure modes of pre-cracked rock materials under uniaxial compression[J]. Pure and Applied Geophysics, 2019, 176(10): 4519–4532. doi: 10.1007/s00024-019-02201-8
    [15]
    YANG Shengqi, HUANG Yanhua, TIAN Wenling, et al. Effect of high temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2087–2107. doi: 10.1007/s00603-018-1725-5
    [16]
    冯子军,赵阳升,张渊,等. 热破裂花岗岩渗透率变化的临界温度[J]. 煤炭学报,2014,39(10):1987–1992.

    FENG Zijun, ZHAO Yangsheng, ZHANG Yuan, et al. Critical temperature of permeability change in thermally cracked granite[J]. Journal of China Coal Society, 2014, 39(10): 1987–1992.
    [17]
    崔翰博,唐巨鹏,姜昕彤. 组合冷却后高温花岗岩物理力学及劈裂面粗糙度试验研究[J]. 岩石力学与工程学报,2021,40(7):1444–1459.

    CUI Hanbo, TANG Jupeng, JIANG Xintong. Experimental study on mechanical performances and cleavage surface roughness of high-temperature granite after combined cooling[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1444–1459.
    [18]
    徐小丽,高峰,沈晓明,等. 高温后花岗岩力学性质及微孔隙结构特征研究[J]. 岩土力学,2010,31(6):1752–1758.

    XU Xiaoli, GAO Feng, SHEN Xiaoming, et al. Research on mechanical characteristics and micropore structure of granite under high-temperature[J]. Rock and Soil Mechanics, 2010, 31(6): 1752–1758.
    [19]
    杨敏,杨磊,李玮枢,等. 循环升温−水冷作用下花岗岩的力学特征与破坏模式[J]. 科学技术与工程,2021,21(32):13828–13836.

    YANG Min, YANG Lei, LI Weishu, et al. Mechanical properties and failure modes of granite under the condition of cyclic heating and water-cooling[J]. Science Technology and Engineering, 2021, 21(32): 13828–13836.
    [20]
    辛国旭,郤保平,杨欣欣,等. 不同冷却模式下高温花岗岩力学特性演变规律试验研究[J]. 太原理工大学学报,2024,55(2):267–275.

    XIN Guoxu, XI Baoping, YANG Xinxin, et al. Experimental study on the evolution law of mechanical properties of high temperature granite under different cooling modes[J]. Journal of Taiyuan University of Technology, 2024, 55(2): 267–275.
    [21]
    李子健. 基于物理信息约束的岩石力学参数及地应力智能预测研究[D]. 大庆:东北石油大学,2023.

    LI Zijian. Research on rock mechanics parameters and in-situ stress intelligent prediction based on physical information constraints[D]. Daqing: Northeast Petroleum University, 2023.
    [22]
    闫伟,孟祥龙,冯永存,等. 砂砾岩电阻率与岩石力学参数相关性研究[J]. 石油钻采工艺,2022,44(1):9–14.

    YAN Wei, MENG Xianglong, FENG Yongcun, et al. Study on correlation between glutenite resistivity and rock mechanical parameters[J]. Oil Drilling & Production Technology, 2022, 44(1): 9–14.
  • Related Articles

    [1]KUANG Yuchun, ZHANG Tao, LIN Wei. Fabrication and Application of Drill String Dynamics Experiment Bench for Small-Scale Horizontal Wells[J]. Petroleum Drilling Techniques, 2024, 52(4): 15-23. DOI: 10.11911/syztjs.2024066
    [2]NIU Decheng, SU Yuanda. Adjacent Borehole Imaging Method Based on Acoustic Remote Detection in Shallow Unconsolidated Formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21-27. DOI: 10.11911/syztjs.2022111
    [3]SUN Zhifeng, QIU Ao, JIN Ya, LI Jie, LUO Bo, PENG Kaixuan. Optimal Design and Experimental Study of the Receiver Sonde in Multipole Acoustic LWD Tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114-120. DOI: 10.11911/syztjs.2022089
    [4]LIU Xien, SUN Zhifeng, QIU Ao, LI Jie, LUO Bo, PENG Kaixuan, LUO Yulin. Design and Experiment for a Quadrupole Acoustic LWD Tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125-131. DOI: 10.11911/syztjs.2022058
    [5]LU Zongyu, ZHENG Junsheng, JIANG Zhenxin, ZHAO Fei. An Experimental Study on Rock Breaking Efficiency with Ultrasonic High-Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2021, 49(2): 20-25. DOI: 10.11911/syztjs.2020126
    [6]Zhu Zuyang, Lu Huangsheng, Zhang Wei, Wu Haiyan, Wu Jinping. Development and Testing of Acoustic Nipples While Drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83-87. DOI: 10.11911/syztjs.201505014
    [7]Zhang Xiaodong, Zhang Yi, Gou Ruyi, He Shi, Wang Haijuan. Simulation of Hammer Bit Drilling Based on Rock Properties Experiment[J]. Petroleum Drilling Techniques, 2014, 42(1): 105-110. DOI: 10.3969/j.issn.1001-0890.2014.01.021
    [8]Li Wei, Yan Tie, Zhang Zhichao, Li Lianqun. Rock Response Mechanism and Rock Breaking Test Analysis for Impact of High Frequency Vibration Drilling Tool[J]. Petroleum Drilling Techniques, 2013, 41(6): 25-28. DOI: 10.3969/j.issn.1001-0890.2013.06.005
    [9]Gao Wenkai, Dou Xiurong, Yan Guoxing. Channel Characteristics of Acoustic Telemetry while Drilling[J]. Petroleum Drilling Techniques, 2013, 41(4): 27-31. DOI: 10.3969/j.issn.1001-0890.2013.04.007
    [10]Xie Hui, Jiang Zhengqing, Wang Xinfeng, Cai Wenjun. A Theory Analysis and Experimental Study on Acoustic Transmission Properties in Drill String[J]. Petroleum Drilling Techniques, 2012, 40(3): 67-72. DOI: 10.3969/j.issn.1001-0890.2012.03.014
  • Cited by

    Periodical cited type(1)

    1. 王彪,李军,杨宏伟,詹家豪,张更,龙震宇. 基于工程参数变化趋势的溢流早期智能检测方法. 石油钻探技术. 2024(05): 145-153 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (122) PDF downloads (43) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return