SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools [J]. Petroleum Drilling Techniques,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089
Citation: SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools [J]. Petroleum Drilling Techniques,2022, 50(4):114-120. DOI: 10.11911/syztjs.2022089

Optimal Design and Experimental Study of the Receiver Sonde in Multipole Acoustic LWD Tools

More Information
  • Received Date: February 16, 2022
  • Revised Date: June 14, 2022
  • Available Online: June 22, 2022
  • The receiver sonde of multipole acoustic logging while drilling (LWD) tools directly affects the quality of collected signals and the stability of the tool’s mechanical structure. Therefore, the receiver sonde of multipole acoustic LWD tools was optimized in this study by combining finite element method and experimental measurements. The analysis of the receiver sonde simulation showed that the performance of the receiver sonde was mainly affected by the thickness and area of piezoelectric ceramic slices as well as the thickness and surface flatness of packaging shells. In addition, receiving sensitivity would be enhanced as the thickness of piezoelectric ceramic slices increased, and the area of piezoelectric ceramic slices had no obvious effect on receiving sensitivity when the frequency was below 15 kHz. Furthermore, the variation range of the receiving sensitivity would be smaller as the thickness of packaging shells decreased and the surface flatness increased. On this basis, long square tubes with aluminum shells were processed using 3D printing technology, with a thickness of 0.5 mm and 2.0 mm, respectively. Then, the fabricated receiver sonde was tested in terms of sensitivity, and the test results were in good agreement with the calculated results. As a result, it was demonstrated that thin-wall shells were more beneficial to the signal receiving of measurement. The optimal design of receiver sonde in multipole acoustic LWD tools will provide new possibilities for designing and developing acoustic LWD tools in China.

  • [1]
    TANG X M, CHENG A. Quantitative borehole acoustic me-thods[M]. Amsterdam: Elsevier, 2004.
    [2]
    庄春喜,李杨虎,孔凡童,等. 随钻斯通利波测井反演地层渗透率的理论、方法及应用[J]. 地球物理学报,2019,62(11):4482–4492. doi: 10.6038/cjg2019N0122

    ZHUANG Chunxi, LI Yanghu, KONG Fantong, et al. Formation permeability estimation using Stoneley waves from logging while drilling: theory, method, and application[J]. Chinese Journal of Geophysics, 2019, 62(11): 4482–4492. doi: 10.6038/cjg2019N0122
    [3]
    林剑松,李盛清,刘忠华,等. 随钻划眼采集模式的过套管声波测井数值模拟与实验研究[J]. 地球物理学进展,2021,36(6):2496–2502. doi: 10.6038/pg2021EE0477

    LIN Jiansong, LI Shengqing, LIU Zhonghua, et al. Numerical simulation and experimental research of through casing sonic logging with redressing LWD acquisition mode[J]. Progress in Geophysics, 2021, 36(6): 2496–2502. doi: 10.6038/pg2021EE0477
    [4]
    DEGRANGE J M, HAWTHORN A, NAKAJIMA H, et al. Sonic while drilling: multipole acoustic tools for multiple answers[R]. SPE 128162, 2010.
    [5]
    朱祖扬,吴海燕,李永杰,等. 钻铤结构对随钻声波测井响应的影响[J]. 石油钻探技术,2016,44(6):117–122. doi: 10.11911/syztjs.201606020

    ZHU Zuyang, WU Haiyan, LI Yongjie, et al. The effect of collar structure on acoustic logging response while drilling[J]. Petroleum Drilling Techniques, 2016, 44(6): 117–122. doi: 10.11911/syztjs.201606020
    [6]
    刘西恩,孙志峰,仇傲,等. 随钻四极子声波测井仪的设计及试验[J]. 石油钻探技术,2022,50(3):125–131.

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Design and experiment for a quadrupole acoustic LWD tool[J]. Petroleum Drilling Techniques, 2022, 50(3): 125–131.
    [7]
    刘西恩,孙志峰,仇傲,等. EXDT正交偶极阵列声波测井仪在地层各向异性评价中的应用[J]. 测井技术,2010,34(6):564–568. doi: 10.3969/j.issn.1004-1338.2010.06.011

    LIU Xien, SUN Zhifeng, QIU Ao, et al. Application of the EXDT cross-dipole array acoustic logging tool to anisotropic formations evaluation[J]. Well Logging Technology, 2010, 34(6): 564–568. doi: 10.3969/j.issn.1004-1338.2010.06.011
    [8]
    李世平,唐炼,丛健生. 叠片型多极子阵列声波测井仪接收换能器灵敏度分析[J]. 测井技术,2012,36(6):620–623. doi: 10.3969/j.issn.1004-1338.2012.06.015

    LI Shiping, TANG Lian, CONG Jiansheng. Finite element analysis of receiving transducers for multipole acoustic array logging tool[J]. Well Logging Technology, 2012, 36(6): 620–623. doi: 10.3969/j.issn.1004-1338.2012.06.015
    [9]
    JIANG Runkun, MEI Lei, LIU Xien, et al. Understanding logging-while-drilling transducers with COMSOL Multiphysics® software[C]//COMSOL Conference 2014, Boston: Monix Energy Solutions, Inc, 2014.
    [10]
    TANG X M, WANG T, PATTERSON D. Multipole acoustic logging-while-drilling[R]. SEG-2002-0364, 2002.
    [11]
    吴金平,乔文孝,车小花. 声波测井高灵敏度宽带接收器研究[J]. 中国石油大学学报(自然科学版),2014,38(6):54–60.

    WU Jinping, QIAO Wenxiao, CHE Xiaohua. Research on high-sensitivity and wide-band receiver used in acoustic well logging[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6): 54–60.
    [12]
    孙志峰,唐晓明,苏远大,等. 随钻多极子声波测井仪接收换能器的数值模拟[J]. 测井技术,2019,43(2):118–121. doi: 10.16489/j.issn.1004-1338.2019.02.002

    SUN Zhifeng, TANG Xiaoming, SU Yuanda, et al. Numerical simulation of transducer of LWD multipole acoustic logging tool[J]. Well Logging Technology, 2019, 43(2): 118–121. doi: 10.16489/j.issn.1004-1338.2019.02.002
    [13]
    栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵[M]. 修订版. 北京: 北京大学出版社, 2005: 326-336.

    LUAN Guidong, ZHANG Jinduo, WANG Renqian. Transducers piezoelectric and arrays[M]. Revised ed. Beijing: Peking University Press, 2005: 326-336.
    [14]
    何晓,陈浩,王秀明. 充液圆槽中单极声波仪器响应数值模拟与分析[J]. 应用声学,2014,33(2):95–101. doi: 10.11684/j.issn.1000-310X.2014.02.001

    HE Xiao, CHEN Hao, WANG Xiuming. Numerical simulations and analyses of monopole sonic logging responses in a liquid-loaded trough[J]. Journal of Applied Acoustics, 2014, 33(2): 95–101. doi: 10.11684/j.issn.1000-310X.2014.02.001
    [15]
    吴金平,陆黄生,朱祖扬,等. 随钻声波测井声系短节模拟样机试验研究[J]. 石油钻探技术,2016,44(2):106–111. doi: 10.11911/syztjs.201602018

    WU Jinping, LU Huangsheng, ZHU Zuyang, et al. Experimental study on the simulation prototype of acoustic nipples for logging-while-drilling (LWD)[J]. Petroleum Drilling Techniques, 2016, 44(2): 106–111. doi: 10.11911/syztjs.201602018
    [16]
    朱祖扬,陆黄生,张卫,等. 随钻声波测井声系短节的研制与测试[J]. 石油钻探技术,2015,43(5):83–87. doi: 10.11911/syztjs.201505014

    ZHU Zuyang, LU Huangsheng, ZHANG Wei, et al. Development and testing of acoustic nipples while drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83–87. doi: 10.11911/syztjs.201505014
  • Related Articles

    [1]LIU Junyi, LI Gongrang, HUANG Limin, MA Xiaoyong, XIA Ye. Research and Application of Environmental Protection Technologies for Drilling Fluid Treatment in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2024, 52(3): 47-52. DOI: 10.11911/syztjs.2023110
    [2]LI Yongkang, JIA Yiyong, ZHANG Guangzhong, WANG Hongwan, CUI Yuhai. Research Progress and Development Suggestion of Stratified Acidizing Strings in Water Injection Wells of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(3): 129-134. DOI: 10.11911/syztjs.2021030
    [3]LI Yongkang, ZHANG Zitan, ZHANG Weiwei, WANG Peng, LIU Jinwei, GUO Hui. Long-Term Expandable Zonal Water Injection Technology in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 100-105. DOI: 10.11911/syztjs.2020092
    [4]GUO Hongfeng, YANG Shukun, DUAN Kaibin, JI Gongming, SHI Jingyan, AN Zonghui. An Improved Integrated Reverse Washing, Measuring and Adjusting Zonal Water Injection Process in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(3): 97-101. DOI: 10.11911/syztjs.2020016
    [5]YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
    [6]HAN Laiju, LI Gongrang. Progress, Development Trends, and Outlook for Drilling Environmental Protection Technologies in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 89-94. DOI: 10.11911/syztjs.2019057
    [7]LIU Honglan. Safe and Controllable Long-Term Layered Water Injection Technology for the Shengli Offshore Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(1): 83-89. DOI: 10.11911/syztjs.2018149
    [8]Ma Mingxin, Yang Haibo, Xu Xin. Application of Hydraulic Centralizer in Unconventional Oil Well Cementing of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(1): 71-74. DOI: 10.3969/j.issn.1001-0890.2014.01.014
    [9]Zhang Shuqing, Ma Yichao, Gao Guangjun, Ren Zhongqi, Liu Quanjiang. Drilling Technologies for Well Caishi-P1 in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(4): 120-124. DOI: 10.3969/j.issn.1001-0890.2013.04.026
    [10]Sui Mei. Technical Difficulties and Countermeasures in Cementing of Deep Exploration Wells in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 73-79. DOI: 10.3969/j.issn.1001-0890.2013.03.014
  • Cited by

    Periodical cited type(10)

    1. 柴华,王瑞科,付群超. 元素录井技术在南海海域前古近系钻井作业中的应用. 石化技术. 2025(02): 313-315 .
    2. 廖云山. 录井技术在油气田勘探开发中的应用. 化工管理. 2024(13): 70-72 .
    3. 王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
    4. 丁心鲁,黎丽丽,郑函庆,刘勇,封猛,刘爽. 超深层白云岩储层油气产能试油前预测方法. 石油钻采工艺. 2024(01): 67-77 .
    5. 景杉,焦发华,李金金. 非常规水平井施工背景下石油钻探中的录井技术分析. 石化技术. 2024(08): 147-149 .
    6. 陈现军,郭书生,廖高龙,董振国,付群超. 基于人工智能的录井岩屑荧光智能检测系统研制. 石油钻探技术. 2024(05): 130-137 . 本站查看
    7. 王志战. 智能录井技术研究进展及发展展望. 石油钻探技术. 2024(05): 51-61 . 本站查看
    8. 杨宇轩,钟宝荣. 基于改进ConvNeXt模型的轻量化岩屑岩性识别方法. 现代电子技术. 2024(24): 131-136 .
    9. 杜焕福,王春伟,杨金莉,孙鑫,董佑桓,姚蒙蒙,都巾帅,陈存元. 页岩油录井评价技术发展历程及应用现状——以济阳坳陷沙河街组为例. 断块油气田. 2024(06): 1006-1013 .
    10. 李戈东. 录井参数定量判别油水层方法研究及应用. 录井工程. 2023(04): 16-19 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (267) PDF downloads (39) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return