Citation: | SONG Xianzhi, LI Gensheng, ZHU Zhaopeng, et al. Research status and development trend of drilling digital twin technology [J]. Petroleum Drilling Techniques, 2024, 52(5):10−19. DOI: 10.11911/syztjs.2024096 |
Driven by the technological impetus of the Fourth Industrial Revolution, the oil and gas drilling industry is rapidly advancing towards informatization, digitization, and intelligentization, with drilling digital twin technology emerging as a frontier and hotspot in the field. Drilling digital twin technology aims to map real drilling operations into virtual space and establish integrated, multi-disciplinary, multi-physical, and multi-scale virtual simulation models throughout the entire lifecycle of drilling. This enables functions such as pre-drilling rehearsal, in-drilling optimization, and post-drilling analysis, ensuring safe, efficient, and cost-effective drilling while enhancing the drilling efficiency of complex oil and gas formation. The current application status of digital twin technology in drilling engineering was introduced, and drilling digital twins were categorized into rig digital twins and wellbore digital twins. A five-dimensional system architecture for drilling digital twins was proposed. Furthermore, future development trends in drilling digital twins were analyzed, including real-time and efficient transmission of drilling data, refinement and quantification of geological models, multi-domain integrated modeling and simulation, dynamic adaptive updating of simulation models, the integration of mechanistic and data-driven modeling, safe and efficient human-machine interaction, and cloud-edge collaborative software system architecture. Relevant suggestions for the development of drilling digital twin technology in China were also proposed. The research findings could serve as a reference for establishing a drilling digital twin technology system and provide guidance for promoting intelligent innovation in the drilling industry.
[1] |
门相勇,王陆新,王越,等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探,2021,26(3):1–8.
MEN Xiangyong, WANG Luxin, WANG Yue, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration, 2021, 26(3): 1–8.
|
[2] |
邹才能,赵群,王红岩,等. 非常规油气勘探开发理论技术助力我国油气增储上产[J]. 石油科技论坛,2021,40(3):72–79.
ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. Theory and technology of unconventional oil and gas exploration and development helps China increase oil and gas reserves and production[J]. Petroleum Science and Technology Forum, 2021, 40(3): 72–79.
|
[3] |
袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12.
YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12.
|
[4] |
邹才能,杨智,张国生,等. 非常规油气地质学理论技术及实践[J]. 地球科学,2023,48(6):2376–2397.
ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Theory, technology and practice of unconventional petroleum geology[J]. Earth Science, 2023, 48(6): 2376–2397.
|
[5] |
苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.
SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
|
[6] |
汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177.
WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.
|
[7] |
李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8.
LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8.
|
[8] |
LI Gensheng, SONG Xianzhi, TIAN Shouceng, et al. Intelligent drilling and completion: a review[J]. Engineering, 2022, 18(11): 33–48.
|
[9] |
李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47.
LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47.
|
[10] |
杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16.
YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16.
|
[11] |
张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65.
ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65.
|
[12] |
SUGIURA J, SAMUEL R, OPPELT J, et al. Drilling modeling and simulation: current state and future goals[R]. SPE 173045, 2015.
|
[13] |
MAYANI M G, ROMMETVEIT R, OEDEGAARD S I, et al. Drilling automated realtime monitoring using digital twin[R]. SPE 192807, 2018.
|
[14] |
LAGRANGE E. Developing a digital twin: the roadmap for oil and gas optimization[R]. SPE 195790, 2019.
|
[15] |
THORESEN K E, KYLLINGSTAD Å, HOVLAND S, et al. Using an advanced digital twin to improve downhole pressure control[R]. SPE 194088, 2019.
|
[16] |
VARADARAJAN P A, ROGUIN G, ABOLINS N, et al. A digital twin for real-time drilling hydraulics simulation using a hybrid approach of physics and machine learning[R]. OTC 31278, 2021.
|
[17] |
SHATIRY M S A, HARUN F, HUSNI Z H, et al. A review of the digital twin technology application in energy industry for performance improvement[J]. AIP Conference Proceedings, 2023, 2827(1): 040012.
|
[18] |
张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报,2020,32(4):1–10.
ZHANG Lin. Cold thinking on digital twins and the modeling and simulation techniques behind them[J]. Journal of System Simulation, 2020, 32(4): 1–10.
|
[19] |
TAO Fei, LIU Ang, HU Tianliang, et al. Digital twin driven smart design[M]. London: Academic Press, 2020.
|
[20] |
庄存波,刘检华,熊辉,等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统,2017,23(4):753–768.
ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753–768.
|
[21] |
张霖,陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报,2021,33(5):995–1007.
ZHANG Lin, LU Han. Discussing digital twin from of modeling and simulation[J]. Journal of System Simulation, 2021, 33(5): 995–1007.
|
[22] |
王巍,刘永生,廖军,等. 数字孪生关键技术及体系架构[J]. 邮电设计技术,2021(8):10–14.
WANG Wei, LIU Yongsheng, LIAO Jun, et al. Key technology and architecture of digital twin[J]. Designing Techniques of Posts and Telecommunications, 2021(8): 10–14.
|
[23] |
本刊编辑部. 美欧军工领域发力数字孪生技术应用[J]. 国防科技工业,2019(2):36–37.
Editorial Department of This Magazine. The US and Europe are making efforts to apply digital twin technology in the military industry[J]. Defence Science & Technology Industry, 2019(2): 36–37.
|
[24] |
方伟光,聂兆伟,刘宸宁,等. 数字孪生驱动的武器装备智能保障技术研究[J]. 系统工程与电子技术,2023,45(4):1247–1260.
FANG Weiguang, NIE Zhaowei, LIU Chenning, et al. Research on digital twin driven intelligent weaponry support technology[J]. Systems Engineering and Electronics, 2023, 45(4): 1247–1260.
|
[25] |
胡权. 数字孪生体:第四次工业革命的通用目的技术[M]. 北京:人民邮电出版社,2021.
HU Quan. Digital twin: general-purpose technologies (GPT) of the fourth industrial revolution[M]. Beijing: Posts and Telecommunications Press, 2021.
|
[26] |
王林,乔建梅. 国外数字孪生技术发展及对我国的启示[J]. 上海信息化,2021(11):52–55.
WANG Lin, QIAO Jianmei. The development of digital twin technology abroad and its implications for China[J]. Shanghai Informatization, 2021(11): 52–55.
|
[27] |
陶飞,程颖,程江峰,等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统,2017,23(8):1603–1611.
TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603–1611.
|
[28] |
苏兴华,詹胜,胡刚. 石油钻井数字孪生架构设计[J]. 信息系统工程,2021(11):26–30.
SU Xinghua, ZHAN Sheng, HU Gang. Design of digital twin architecture for oil drilling[J]. China CIO News, 2021(11): 26–30.
|
[29] |
杨少龙,孙延浩,向先波,等. 船舶数字孪生及其服务全生命周期研究综述[J]. 舰船科学技术,2020,42(21):1–8.
YANG Shaolong, SUN Yanhao, XIANG Xianbo, et al. Ship digital twin and a review of life-cycle service[J]. Ship Science and Technology, 2020, 42(21): 1–8.
|
[30] |
陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1):1–18.
TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1–18.
|
[31] |
ROMMETVEIT R, BJØRKEVOLL K S, HALSEY G W, et al. eDrilling: a system for real-time drilling simulation, 3D visualization, and control[R]. SPE 106903, 2007.
|
[32] |
MAYANI M G, SVENDSEN M, OEDEGAARD S I. Drilling digital twin success stories the last 10 years[R]. SPE 191336, 2018.
|
[33] |
ROMMETVEIT R, GHOLAMI MAYANI M, NABAVI J, et al. Automatic realtime monitoring of drilling using digital twin technologies enhance safety and reduce costs[R]. SPE 197465, 2019.
|
[34] |
KEMAJOU V, SAMUEL R. Real-time well monitoring and engineering analysis of drilling activities: Intelligent rig state detection and prediction with uncertainty[C]//ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2020: V011T11A001.
|
[35] |
ISLAM N, ROSENER A, SOUZA W, et al. Smarter well engineering concepts aid in reducing planning time and increasing ROP[C]//First EAGE Digitalization Conference and Exhibition. Odijk: European Association of Geoscientists & Engineers, 2020: 1–5.
|
[36] |
BIMASTIANTO P, KHAMBETE S, ALSAADI H, et al. Digital twin implementation on current development drilling, benefits and way forward[R]. SPE 202795, 2020.
|
[37] |
井玉霏. 石油钻机提升系统的数字孪生模型构建[D]. 西安:西安石油大学,2023.
JING Yufei. Construction of digital twin model for lifting system of oil drilling rig[D]. Xi'an: Xi'an Shiyou University, 2023.
|
[38] |
SRIKONDA R, RASTOGI A, OESTENSEN H. Increasing facility uptime using machine learning and physics-based hybrid analytics in a dynamic digital twin[R]. OTC 30723, 2020.
|
[39] |
WU Bo, KOU Yufeng, LIU Jun, et al. Research on the application of digital twin technology in the structural safety assessment of deep-water semi-submersible platforms[R]. ISOPE-I 22-296, 2022.
|
[40] |
MURRAY P, WATTIS Z, BAIN B, et al. Towards a digital twin supporting risk based decision making for offshore installations[R]. SPE 195717, 2019.
|
[41] |
蒋爱国,王金江,谷明,等. 数字孪生驱动半潜式钻井平台智能技术应用[J]. 船海工程,2019,48(5):49–52.
JIANG Aiguo, WANG Jinjiang, GU Ming, et al. Application of intelligent technology of semi-submersible drilling platform driven by digital twin[J]. Ship & Ocean Engineering, 2019, 48(5): 49–52.
|
[42] |
STRAW M, MISTRY R, LEWIS S, et al. Predictive digital twin for performance and integrity[R]. OTC 31863, 2022.
|
[43] |
刘文岭,韩大匡. 数字孪生油气藏:智慧油气田建设的新方向[J]. 石油学报,2022,43(10):1450–1461.
LIU Wenling, HAN Dakuang. Digital twin system of oil and gas reservoirs: a new direction for smart oil and gas field construction[J]. Acta Petrolei Sinica, 2022, 43(10): 1450–1461.
|
[44] |
SHIRANGI M G, FURLONG E, SIMS K S. Digital twins for well planning and bit dull grade prediction[R]. SPE 200740, 2020.
|
[45] |
SHI Jibin, DOURTHE L, LI D, et al. Real-time reamer vibration predicting, monitoring, and decision-making using hybrid modeling and a process digital twin[R]. SPE 208795, 2022.
|
[46] |
BOUKREDERA F S, HADJADJ A, YOUCEFI M R. Drill string torsional vibrations modeling with dynamic drill pipe properties measurement and field validation[J]. Journal of Energy Resources Technology, 2022, 144(2): 024502. doi: 10.1115/1.4051299
|
[47] |
SHIRANGI M G, ETTEHADI R, ARAGALL R, et al. Digital twins for drilling fluids: advances and opportunities[R]. SPE 199681, 2020.
|
[48] |
SAINI G S, ASHOK P, VAN OORT E. Predictive action planning for hole cleaning optimization and stuck pipe prevention using digital twinning and reinforcement learning[R]. SPE 199548, 2020.
|
[49] |
ANJOS J L, ARANHA P E, MARTINS A L, et al. Digital twin for well integrity with real time surveillance[R]. OTC 30574, 2020.
|
[50] |
KARPOV R B, ZUBKOV D Y, MURLAEV A V, et al. Drilling performance and data quality control with live digital twin[R]. SPE 206527, 2021.
|
[51] |
张鑫鑫,梁博文,张晓龙,等. 智能钻井装备与技术研究进展[J]. 煤田地质与勘探,2023,51(9):20–30. doi: 10.12363/issn.1001-1986.23.06.0324
ZHANG Xinxin, LIANG Bowen, ZHANG Xiaolong, et al. Research progress of intelligent drilling equipment and technology[J]. Coal Geology & Exploration, 2023, 51(9): 20–30. doi: 10.12363/issn.1001-1986.23.06.0324
|
[52] |
赵恩普,刘晓晨. 浅析井场数据远程传输系统的设计与实现[J]. 中国管理信息化,2018,21(18):66–67.
ZHAO Enpu, LIU Xiaochen. Design and implementation of remote transmission system for well site data[J]. China Management Informationization, 2018, 21(18): 66–67.
|
[53] |
何治亮,赵向原,张文彪,等. 深层–超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质,2023,44(1):16–33.
HE Zhiliang, ZHAO Xiangyuan, ZHANG Wenbiao, et al. Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2023, 44(1): 16–33.
|
[54] |
叶新,潘清,董正宏. 多领域建模仿真方法综述[J]. 软件,2014,35(3):233–236.
YE Xin, PAN Qing, DONG Zhenghong. Comparison of multi-domain modeling and simulation technology[J]. Software, 2014, 35(3): 233–236.
|
[55] |
ZHANG Chengkai, SONG Xianzhi, SU Yinao, et al. Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110396. doi: 10.1016/j.petrol.2022.110396
|
[56] |
祝兆鹏,张瑞,宋先知,等. 数据拓展和增量更新的井底压力实时预测方法[J]. 石油机械,2023,51(6):1–10.
ZHU Zhaopeng, ZHANG Rui, SONG Xianzhi, et al. Real-time prediction of bottom hole pressure based on data expansion and incremental update[J]. China Petroleum Machinery, 2023, 51(6): 1–10.
|
[57] |
肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探,2022,61(2):205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002
XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002
|
[58] |
KARNIADAKIS G E, KEVREKIDIS I G, LU Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422–440. doi: 10.1038/s42254-021-00314-5
|
[59] |
CURINA F, TALAT QUSHCHI A, ALDANY A. A case study for the development and use of a well control simulator as a digital twin of a real scenario[R]. SPE 206530, 2021.
|
[60] |
FERRARA P, RICCI MACCARINI G, POLONI R, et al. Virtual reality: new concepts for virtual drilling environment and well digital twin[R]. IPTC 20267, 2020.
|
[61] |
CHATAR C, LOKESH R, KAMBOJ V, et al. Extended reality and gamification for drilling[R]. SPE 212532, 2023.
|
[62] |
王文明,侯春来,武振宇,等. 海洋无隔水管修井的数字孪生框架与可视化交互[J]. 计算机集成制造系统,2021,27(2):423–431.
WANG Wenming, HOU Chunlai, WU Zhenyu, et al. Frame and visualization for digital twin of marine riserless well intervention[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 423–431.
|
[63] |
李浩,刘根,文笑雨,等. 面向人机交互的数字孪生系统工业安全控制体系与关键技术[J]. 计算机集成制造系统,2021,27(2):374–389.
LI Hao, LIU Gen, WEN Xiaoyu, et al. Industrial safety control system and key technologies of digital twin system oriented to human-machine interaction[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 374–389.
|
[64] |
金镭,秦雪伦,江如意,等. 油气行业数字孪生研究述评与展望[J]. 世界石油工业,2022,29(5):17–25.
JIN Lei, QIN Xuelun, JIANG Ruyi, et al. Review and prospect of digital twin research in oil and gas industry[J]. World Petroleum Industry, 2022, 29(5): 17–25.
|
1. |
佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示. 天然气工业. 2024(01): 40-48 .
![]() | |
2. |
张福铭,肖伟,朱思佳,石礼岗,赵军. 超高温高密度防腐防窜水泥浆. 钻井液与完井液. 2024(04): 506-514 .
![]() | |
3. |
徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 .
![]() | |
4. |
刘书杰,武治强,吴怡,侯铎,张智. 深水深井高温高压水泥石固化养护及制备方法研究. 石油钻采工艺. 2022(03): 291-296 .
![]() | |
5. |
邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 .
![]() | |
6. |
李成全,何世明,张平. 磨溪-高石梯构造超深定向井固井水泥浆技术. 石油与天然气化工. 2020(02): 73-79 .
![]() | |
7. |
杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 .
![]() |