YIN Huibo, SUO Zhongwei, LI Bodong, TU Yulin. Drilling Rate Improvement Technology Adopted in Well HWY-116 of the HWY Block, Saudi Arabia[J]. Petroleum Drilling Techniques, 2020, 48(5): 34-38. DOI: 10.11911/syztjs.2020048
Citation: YIN Huibo, SUO Zhongwei, LI Bodong, TU Yulin. Drilling Rate Improvement Technology Adopted in Well HWY-116 of the HWY Block, Saudi Arabia[J]. Petroleum Drilling Techniques, 2020, 48(5): 34-38. DOI: 10.11911/syztjs.2020048

Drilling Rate Improvement Technology Adopted in Well HWY-116 of the HWY Block, Saudi Arabia

More Information
  • Received Date: January 24, 2020
  • Revised Date: April 01, 2020
  • Available Online: June 16, 2020
  • In order to raise the ROP in hard and highly abrasive formation in the third spud vertical section of the HWY Block in Saudi Arabia, the rotary percussion drilling technology test with hydraulic jet impactor was carried out in the third spud section of Well HWY-116. According to the relationship between the performance parameters of hydraulic jet impactor and the drilling resistance parameters of rock, the BHA was optimized with the drilling design of Well HWY-116 combined. The PDC bit matched the hydraulic jet impactor was selected to optimize the rotary percussion drilling parameters. Based on these optimizations, a drilling rate improvement scheme was formed for rotary percussion drilling with a ϕ228.6 mm hydraulic jet impactor suitable for Well HWY-116. The ROP in the third spud section of Well HWY-116 was 9.40 m/h, which was 45.5% higher than that of the adjoining wells. The results demonstrated that the ROP in hard and highly abrasive formation in the HWY Block of Saudi Arabia could be improved by the rotary percussion drilling technology with hydraulic jet impactor.
  • [1]
    SIMPSO M, ZHOU Shaohua, TREECE M, et al. Optimal horizontaldrilling of hard and abrasive unayzah sandstones[R]. SPE 85331, 2003.
    [2]
    SIMPSO M, ZHOU Shaohua, TREECE M, et al. Breakthrough horizontal drilling performance in Pre-Khuff Strata with steerable turbines[R]. SPE 90376, 2004.
    [3]
    DEULSCH U, MARX C, RISCHMULLER H. Evaluation of hammer drilling potential for KTB[M]//FUCHS K, KOZLOVSKY Y A, KRIVTSOV A I, et al. Super-deep continental drilling and deep geophysical sounding. Heidelberg: Springer Veerlag, 1990: 310-321.
    [4]
    JOHANSSON P. Water powered down-the-hole drilling[R]. Stockhom: LKAB, 2013.
    [5]
    罗恒荣,索忠伟,谭勇,等. 防托压冲击器在盘40-斜501井的应用[J]. 石油钻探技术, 2015, 43(5): 112–115.

    LUO Hengrong, SUO Zhongwei, TAN Yong, et al. Application of reducing WOB stack impactor in Well Pan 40-Xie 501[J]. Petroleum Drilling Techniques, 2015, 43(5): 112–115.
    [6]
    王建龙,于志强,王波,等. 冲击类钻井提速工具专用PDC钻头设计与试验[J]. 石油矿场机械, 2019, 48(3): 19–23. doi: 10.3969/j.issn.1001-3482.2019.03.004

    WANG Jianlong, YU Zhiqiang, WANG Bo, et al. Design and test of PDC bit for impact drilling speed-up tool[J]. Oil Field Equipment, 2019, 48(3): 19–23. doi: 10.3969/j.issn.1001-3482.2019.03.004
    [7]
    柳贡慧,李玉梅,李军,等. 复合冲击破岩钻井新技术[J]. 石油钻探技术, 2016, 44(5): 10–15.

    LIU Gonghui, LI Yumei, LI Jun, et al. New technology with composite percussion drilling and rock breaking[J]. Petroleum Drilling Techniques, 2016, 44(5): 10–15.
    [8]
    李广国,索忠伟,王甲昌,等. 射流冲击器配合PDC钻头在超深井中的应用[J]. 石油机械, 2013, 41(4): 31–34. doi: 10.3969/j.issn.1001-4578.2013.04.008

    LI Guangguo, SUO Zhongwei, WANG Jiachang, et al. Application of jet hammer and PDC bit in superdeep well[J]. China Petroleum Machinery, 2013, 41(4): 31–34. doi: 10.3969/j.issn.1001-4578.2013.04.008
    [9]
    索忠伟. ϕ228.6 mm射流冲击器研制及硬地层提速试验[J]. 石油钻探技术, 2019, 47(4): 54–58. doi: 10.11911/syztjs.2019085

    SUO Zhongwei. The development of ϕ228.6 mm hydro-efflux hammer and ROP increase test in hard formations[J]. Petroluem Drilling Techniques, 2019, 47(4): 54–58. doi: 10.11911/syztjs.2019085
    [10]
    黄志强,范永涛,魏振强,等. 冲旋钻头破岩机理仿真研究[J]. 西南石油大学学报(自然科学版), 2010, 32(1): 148–150. doi: 10.3863/j.issn.1674-5086.2010.01.030

    HUANG Zhiqiang, FAN Yongtao, WEI Zhenqiang, et al. Emulation study on rock-breaking mechanism of percussion-rotary bit[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(1): 148–150. doi: 10.3863/j.issn.1674-5086.2010.01.030
    [11]
    张晓东, 易发全, 张强, 等.PDC钻头与岩石相互作用规律试验研究[J].江汉石油学院学报, 2003, 25(增刊1): 64-65.

    ZHANG Xiaodong, YI Faquan, ZHANG Qiang, et al. Experimental study of interacting laws of PDC bit with rock[J]. Journal of Jianghan Petroleum Institute, 2003, 25(supplement 1): 64-65.
    [12]
    曲冠政,曲大伟,郭瑞,等. PDC钻头复合片磨损速度模型研究[J]. 复杂油气藏, 2013, 6(1): 62–64. doi: 10.3969/j.issn.1674-4667.2013.01.017

    QU Guanzheng, QU Dawei, GUO Rui, et al. Study on a swear rate model of PDC composite cutters[J]. Complex Hydrocarbon Reservoirs, 2013, 6(1): 62–64. doi: 10.3969/j.issn.1674-4667.2013.01.017
    [13]
    马清明,王瑞和. PDC切削齿破岩受力的试验研究[J]. 中国石油大学学报(自然科学版), 2006, 30(2): 45–47, 58.

    MA Qingming, WANG Ruihe. Experimental study on force of PDC cutter breaking rock[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(2): 45–47, 58.
    [14]
    况雨春,陈玉中,屠俊文,等. 基于UG/OPEN的PDC钻头切削参数仿真方法[J]. 石油钻探技术, 2014, 42(4): 111–115.

    KUANG Yuchun, CHEN Yuzhong, TU Junwen, et al. Simulation of cutting parameters of PDC bit based on UG/OPEN[J]. Petroleum Drilling Techniques, 2014, 42(4): 111–115.
    [15]
    赵统武.冲击钻进动力学[M].北京: 冶金工业出版社, 1996: 56–57.

    ZHAO Tongwu. Percussion drilling dynamics[M]. Beijing: Metallurgical Industry Press, 1996: 56–57.
  • Related Articles

    [1]ZENG Yijin, WANG Minsheng, GUANG Xinjun, WANG Guo, ZHANG Hongbao, CHEN Zengwei, DUAN Jinan. Progress and Prospects of Sinopec’s Intelligent Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 1-9. DOI: 10.11911/syztjs.2024081
    [2]WANG Zhizhan. Thoughts for New Progress and Development Directions of Sinopec’s Surface Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(4): 124-133. DOI: 10.11911/syztjs.2023027
    [3]YUAN Jianqiang. New Progress and Development Proposals of Sinopec’s Drilling Technologies for Ultra-Long Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81-87. DOI: 10.11911/syztjs.2023030
    [4]ZENG Yijin. Novel Advancements and Development Suggestions of Cementing Technologies for Deep and Ultra-Deep Wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66-73. DOI: 10.11911/syztjs.2023035
    [5]ZHANG Jinhong. Present Status and Development Prospects of Sinopec Shale Oil Engineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8-13. DOI: 10.11911/syztjs.2021072
    [6]LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046
    [7]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [8]DING Shidong, ZHAO Xiangyang. New Progress and Development Suggestions for Drilling and Completion Technologies in Sinopec Key Exploration Areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11-20. DOI: 10.11911/syztjs.2020069
    [9]LU Baoping, DING Shidong. New Progress and Development Prospect in Shale Gas Engineering Technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. DOI: 10.11911/syztjs.2018001
    [10]Lu Baoping. Sinopec Engineering Technical Advance and Its Developing Tendency in Shale Gas[J]. Petroleum Drilling Techniques, 2013, 41(5): 1-8. DOI: 10.3969/j.issn.1001-0890.2013.05.001
  • Cited by

    Periodical cited type(9)

    1. 李新发,李婷,刘博峰,张峰,肖志明,王浩帆. 基于压裂监测的致密储层甜点识别. 断块油气田. 2020(05): 603-607 .
    2. 冯福平,黄芮,雷扬,GUO Boyun,胡超洋,王胡振. 基于能量理论的体积压裂工程改造效果评价模型及应用. 中国石油大学学报(自然科学版). 2019(01): 81-89 .
    3. 田林海,屈刚,雷鸣,于德成,张伟. 玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨. 石油钻探技术. 2019(01): 20-24 . 本站查看
    4. 刘子雄,王艳红,高杰,冯青,樊爱彬. 基于压裂返排数据的有效破裂体积计算方法. 石油地质与工程. 2019(02): 112-115 .
    5. 魏旭,张永平,尚立涛,王海涛,吴森昊. 多段多簇压裂储层改造效果影响因素分析. 油气地质与采收率. 2018(02): 96-102+114 .
    6. 修乃岭,严玉忠,管保山,王欣,王臻,严星明. 基于物质平衡原理对页岩气压裂储层有效改造体积进行估算方法研究. 石油地质与工程. 2018(06): 103-105 .
    7. 白晓虎,苏良银,赵伯平,达引朋,吴甫让,段鹏辉. 注采井网条件下水平井体积压裂重复改造优化设计. 断块油气田. 2017(02): 194-198 .
    8. 隋阳,刘建伟,郭旭东,向洪,王波,王涛. 体积压裂技术在红台低含油饱和度致密砂岩油藏的应用. 石油钻采工艺. 2017(03): 349-355 .
    9. 于永军,朱万成,李连崇,魏晨慧,代风,刘书源,王卫东. 水力压裂裂缝相互干扰应力阴影效应理论分析. 岩石力学与工程学报. 2017(12): 2926-2939 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (798) PDF downloads (96) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return