YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023
Citation: YANG Lingzhi, LIU Yanqing, HU Gaixing, SHEN Xiaoli, BI Fuwei. Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113-117. DOI: 10.11911/syztjs.2020023

Stratified Water Injection Technology of Concentric Seal-Check, Logging and Adjustment Integration in Changqing Oilfield

More Information
  • Received Date: June 23, 2019
  • Revised Date: December 17, 2019
  • Available Online: January 05, 2020
  • In order to improve the test efficiency and to reduce the operation intensity and test cost of stratified water injection technology with small water volume in directional wells of Changqing Oilfield, the stratified water injection technology and key tools of concentric seal-check, logging and adjustment integration were studied. Mechatronics control method was adopted and the downhole test instrument was controlled by cable to carry out the seal-check, logging and adjustment. According to the principle of mechanical clutch structure, existing electric seal-check device was integrated with concentric electric measuring and adjusting instrument, the proposed technology further improved the degree of integration and automation with the functions of early seal-check device and measuring and adjusting instrument. The technology has been applied to more than 430 wells in Changqing Oilfield with one-trip operation completing the whole process of seal-check, measurement and adjustment. The success rate of logging and adjustment was up to 98.0%, and the logging and adjustment error of single layer was less than 10%. The average test duration of single well seal-check has been reduced from 6-8 hours to 4 hours, and the annual operation cost of single well was reduced by 9,600 yuan. The successful development of the stratified water injection technology of concentric seal-check, logging and adjustment integration could provide a new and high-efficiency test method for developing low permeability reservoirs in a cost-saving way.

  • [1]
    刘合,裴晓含,罗凯,等. 中国油气田开发分层注水工艺技术现状与发展趋势[J]. 石油勘探与开发, 2013, 12(6): 733–737. doi: 10.11698/PED.2013.06.13

    LIU He, PEI Xiaohan, LUO Kai, et al. Current status and trend of separated layer water flooding in China[J]. Petroleum Exploration and Development, 2013, 12(6): 733–737. doi: 10.11698/PED.2013.06.13
    [2]
    耿海涛,肖国华,宋显民,等. 同心测调一体分注技术研究与应用[J]. 断块油气田, 2013, 20(3): 406–408.

    GENG Haitao, XIAO Guohua, SONG Xianmin, et al. Research and application of concentric testing and regulating in separate layer injection[J]. Fault-Block Oil & Gas Field, 2013, 20(3): 406–408.
    [3]
    宋显民,张立民,张宇辉,等. 分层定量注水分层测压一体技术[J]. 石油钻采工艺, 2016, 38(4): 526–530.

    SONG Xianmin, ZHANG Limin, ZHANG Yuhui, et al. Integrated technology of separate-layer quantitative water flooding and pressure monitoring[J]. Oil Drilling & Production Technology, 2016, 38(4): 526–530.
    [4]
    夏健,杨春林,谭福俊,等. 华北油田分层注水技术现状与展望[J]. 石油钻采工艺, 2015, 37(2): 74–78.

    XIA Jian, YANG Chunlin, TAN Fujun, et al. Current status and prospect of zonal water injection technology in Huabei Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(2): 74–78.
    [5]
    于九政,巨亚锋,郭方元. 桥式同心分层注水工艺的研究与试验[J]. 石油钻采工艺, 2015, 37(5): 92–94.

    YU Jiuzheng, JU Yafeng, GUO Fangyuan. Research and experiment on bridge concentric separated layer water injection technology[J]. Oil Drilling & Production Technology, 2015, 37(5): 92–94.
    [6]
    于九政,杨玲智,毕福伟. 南梁油田桥式同心分层注水技术研究与应用[J]. 钻采工艺, 2016, 39(5): 30–32. doi: 10.3969/J.ISSN.1006-768X.2016.05.10

    YU Jiuzheng, YANG Lingzhi, BI Fuwei. Research on bridge type concentric layer water injection in Nanliang Oilfield and its application[J]. Drilling & Production Technology, 2016, 39(5): 30–32. doi: 10.3969/J.ISSN.1006-768X.2016.05.10
    [7]
    孙召勃,李云鹏,贾晓飞,等. 基于驱替定量表征的高含水油田注水井分层配注量确定方法[J]. 石油钻探技术, 2018, 46(2): 87–91.

    SUN Zhaobo, LI Yunpeng, JIA Xiaofei, et al. A method to determine the layered injection allocation rates for water injection wells in high water cut oilfield based on displacement quantitative characterization[J]. Petroleum Drilling Techniques, 2018, 46(2): 87–91.
    [8]
    刘红兰. 分层注水井测调一体化新技术[J]. 石油钻探技术, 2018, 46(1): 83–89.

    LIU Honglan. A new integrated measuring and adjusting technology of separate layer water injection well[J]. Petroleum Drilling Techniques, 2018, 46(1): 83–89.
    [9]
    刘红兰. 胜利海上油田安全可控长效分层注水技术[J]. 石油钻探技术, 2019, 47(1): 83–89. doi: 10.11911/syztjs.2018149

    LIU Honglan. Safe and controllable long-term layered water injection technology for the Shengli offshore oilfield[J]. Petroleum Drilling Techniques, 2019, 47(1): 83–89. doi: 10.11911/syztjs.2018149
    [10]
    李汉周,彭太祥,郭振杰,等. 连续薄夹层油藏细分注水技术研究与应用[J]. 特种油气藏, 2019, 26(2): 164–169. doi: 10.3969/j.issn.1006-6535.2019.02.030

    LI Hanzhou, PENG Taixiang, GUO Zhenjie, et al. Subdivision water injection and its application in continuous thin interbedded reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 164–169. doi: 10.3969/j.issn.1006-6535.2019.02.030
    [11]
    杨玲智,于九政,王子建,等. 桥式同心分层压降测试仪器研制与试验[J]. 石油机械, 2017, 45(6): 96–98.

    YANG Lingzhi, YU Jiuzheng, WANG Zijian, et al. Development and test of bridge concentric separate layer pressure testing device[J]. China Petroleum Machinery, 2017, 45(6): 96–98.
    [12]
    于九政,郭方元,巨亚锋. 桥式同心配水器的研制与试验[J]. 石油机械, 2013, 41(9): 88–90. doi: 10.3969/j.issn.1001-4578.2013.09.022

    YU Jiuzheng, GUO Fangyuan, JU Yafeng. Development and test of bridge concentric water distributor[J]. China Petroleum Machinery, 2013, 41(9): 88–90. doi: 10.3969/j.issn.1001-4578.2013.09.022
    [13]
    于九政,巨亚锋,杨玲智. 同心电动井下测调仪的研制与应用[J]. 石油机械, 2016, 44(2): 77–79, 83.

    YU Jiuzheng, JU Yafeng, YANG Lingzhi. Development and application of concentric electric downhole measuring and regulating instrument[J]. China Petroleum Machinery, 2016, 44(2): 77–79, 83.
    [14]
    马奎前,陈存良,刘英宪. 基于层间均衡驱替的注水井分层配注方法[J]. 特种油气藏, 2019, 26(4): 109–112.

    MA Kuiqian, CHEN Cunliang, LIU Yingxian. Separate-layer water injection allocation based on inter-layer balanced waterflooding[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 109–112.
  • Related Articles

    [1]WANG Zhiyuan, LIU Hui, SUN Baojiang, LIU Hongtao, LOU Wenqiang. Numerical Study on Drilling Fluid Leakage under Fluid-Solid Coupling in Deep Fractured Gas Reservoir[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025031
    [2]LIAO Hualin, YIN Lu, SUN Feng, WEI Jun, YAN Hui, TENG Zhixiang. Experimental Study on Effect of Temperature and Cooling Method on Mechanical Parameters of Granite[J]. Petroleum Drilling Techniques, 2024, 52(6): 23-29. DOI: 10.11911/syztjs.2024067
    [3]JING Shuai, XIAO Li, ZHANG Haolin, WANG Xi, ZHANG Feifei. A Method for Minimizing Annulus Pressure Loss by means of Hole Cleaning and Hydraulics Coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56-62. DOI: 10.11911/syztjs.2020009
    [4]LI Ang, YANG Wanyou, DING Qianshen, KANG Shaofei, YANG Wei, WU Feipeng. Testing and Evaluation of Reinforced Reservoir Stimulations Using Composite Electrothermal-Chemical Shock Waves[J]. Petroleum Drilling Techniques, 2020, 48(1): 72-79. DOI: 10.11911/syztjs.2019129
    [5]DENG Yuan, HE Shiming, DENG Xianghua, PENG Yuanchun, HE Shiyun, TANG Ming. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling[J]. Petroleum Drilling Techniques, 2020, 48(1): 26-33. DOI: 10.11911/syztjs.2020010
    [6]XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
    [7]LIU Jinhua, LIU Sihai, LONG Daqing, CHEN Cengwei, JIN Ruihuan. Strengthening Plugging Operations by Combining Cross-Linked Film and Chemical Consolidation in Well Ming-1[J]. Petroleum Drilling Techniques, 2017, 45(2): 54-60. DOI: 10.11911/syztjs.201702009
    [8]Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4): 37-41. DOI: 10.3969/j.issn.1001-0890.2014.04.007
    [9]Ma Yue, Chen Mian, Jin Yan, Hou Bing, Yang Pei. Mechanism of Effect of Relative Humidity on Creep Behavior of Gypsum Rock[J]. Petroleum Drilling Techniques, 2013, 41(4): 19-22. DOI: 10.3969/j.issn.1001-0890.2013.04.005
    [10]Lu Yunhu, Chen Mian, An Sheng. Brittle Shale Wellbore Fracture Propagation Mechanism[J]. Petroleum Drilling Techniques, 2012, 40(4): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.04.003

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return