Citation: | LIN Yongxue, ZHEN Jianwu. Water Based Drilling Fluid Technology for Deep Shale Gas Horizontal Wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21-27. DOI: 10.11911/syztjs.2019022 |
In order to solve the problem of wellbore instability in the horizontal section of deep shale gas horizontal wells in Block Weiyuan, a water based drilling fluid with strong inhibition and plugging capacity was developed. Through analysis on mineral composition, reservoir physical properties and wellbore instability mechanism in shale formation in Weiyuan Block, it was believed that the drilling fluid used in horizontal wells of this formation should have good performance in terms of inhibition, plugging and lubricity. The SM-ShaleMud water based drilling fluid suitable for deep shale gas horizontal wells was prepared by optimizing and selecting proper inhibitors, plugging agents and lubricants,, and the lab tests were conducted to evaluate its performance. The lab evaluation results showed that this drilling fluid had good rheological properties, high temperature high pressure (HTHP) fluid loss and low lubrication coefficient; SM-ShaleMud had temperature-resistance up to 140 °C, and presented good performance in inhibiting clay hydration and the generation and extension of fractures; this fluid system had been applied in three wells of Weiye 23 Platform in Weiyuan District, and achieved an excellent application effect. One point had to be stated that it ensured the wellbore stability after being soaked for 67 days, indicating the strong inhibition and plugging capacity. Research suggested that this water based drilling fluid system could solve the problem of wellbore instability in long horizontal section, and achieve a significant application effect, thereby demonstrating a good application prospective.
[1] |
孙四维, 刘学松, 范聪, 等. 页岩气水基钻井液技术分析[J]. 当代化工研究, 2017(11): 25–26. doi: 10.3969/j.issn.1672-8114.2017.11.015
SUN Siwei, LIU Xuesong, FAN Cong, et al. Shale gas water based drilling fluid technology analysis[J]. Chemical Intermediate, 2017(11): 25–26. doi: 10.3969/j.issn.1672-8114.2017.11.015
|
[2] |
高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术, 2018, 46(3): 20–26.
GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new method for evaluating the characteristics of hydration in the Longmaxi Shale Gas Reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.
|
[3] |
林永学,高书阳,曾义金. 龙马溪组页岩强度评价与分析[J]. 石油钻探技术, 2015, 43(5): 20–25.
LIN Yongxue, GAO Shuyang, ZENG Yijin. Evaluation and analysis of rock strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20–25.
|
[4] |
张国仿. 涪陵页岩气田低黏低切聚合物防塌水基钻井液研制及现场试验[J]. 石油钻探技术, 2016, 44(2): 22–27.
ZHANG Guofang. The development and field testing of low viscosity and low gel strength polymer collapse-resistant water-based drilling fluid in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(2): 22–27.
|
[5] |
谭秀华, 熊鑫, 曾强渗. 渝东南地区页岩气钻井泥浆优化技术[J]. 重庆科技学院学报(自然科学版), 2018, 20(1): 67–70. doi: 10.3969/j.issn.1673-1980.2018.01.016
TAN Xiuhua, XIONG Xin, ZENG Qiangshen. Optimization technology of shale gas drilling mud in Southeast Chongqing[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2018, 20(1): 67–70. doi: 10.3969/j.issn.1673-1980.2018.01.016
|
[6] |
王中华. 页岩气水平井钻井液技术的难点及选用原则[J]. 中外能源, 2012, 17(4): 43–47.
WANG Zhonghua. Difficulty and applicable principle of the drilling fluid technology of horizontal wells for shale gas[J]. Sino-Global Energy, 2012, 17(4): 43–47.
|
[7] |
王光兵, 刘向君, 梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010
WANG Guangbing, LIU Xiangjun, LIANG Lixi. Ultrasonic transmission experimental investigation on hydration of hard brittle shale[J]. Science Technology and Engineering, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010
|
[8] |
罗诚, 吴婷, 朱哲显. 硬脆性泥页岩井壁稳定性研究[J]. 西部探矿工程, 2013, 25(6): 50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017
LUO Cheng, WU Ting, ZHU Zhexian. Study on the wellbore stability of hard brittle shale[J]. West-China Exploration Engineering, 2013, 25(6): 50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017
|
[9] |
丁乙, 张安东. 川南龙马溪页岩地层井壁失稳实验研究[J]. 科学技术与工程, 2014, 14(15): 25–28, 42. doi: 10.3969/j.issn.1671-1815.2014.15.005
DING Yi, ZHANG Andong. Experiment research of borehole instability of shale in Longmaxi Formation of South Sichuan[J]. Science Technology and Engineering, 2014, 14(15): 25–28, 42. doi: 10.3969/j.issn.1671-1815.2014.15.005
|
[10] |
刘洋洋, 邓明毅, 谢刚, 等. 基于压力传递的钻井液纳米封堵剂研究与应用[J]. 钻井液与完井液, 2017, 34(6): 24–28, 34. doi: 10.3969/j.issn.1001-5620.2017.06.005
LIU Yangyang, DENG Mingyi, XIE Gang, et al. Study and application of a drilling fluid plugging agent based on pressure transfer inhibition[J]. Drilling Fluid & Completion Fluid, 2017, 34(6): 24–28, 34. doi: 10.3969/j.issn.1001-5620.2017.06.005
|
[11] |
钟汉毅, 黄维安, 林永学, 等. 新型聚胺页岩抑制剂性能评价[J]. 石油钻探技术, 2011, 39(6): 44–48. doi: 10.3969/j.issn.1001-0890.2011.06.011
ZHONG Hanyi, HUANG Weian, LIN Yongxue, et al. Properties evaluation of a novel polyamine shale inhibitor[J]. Petroleum Drilling Techniques, 2011, 39(6): 44–48. doi: 10.3969/j.issn.1001-0890.2011.06.011
|
[12] |
王琳, 董晓强, 杨小华, 等. 高密度钻井液用润滑剂SMJH-1的研制及性能评价[J]. 钻井液与完井液, 2016, 33(1): 28–32.
WANG Lin, DONG Xiaoqiang, YANG Xiaohua, et al. Development and evaluation of a high density drilling fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 28–32.
|
[1] | WANG Zhonghua. Current Situation and Development Suggestions for Drilling Fluid Technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4): 114-123. DOI: 10.11911/syztjs.2023028 |
[2] | WANG Zhonghua. Review of Progress on Drilling Fluid Technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95-102. DOI: 10.11911/syztjs.2019054 |
[3] | CHEN Xiaohua, ZHANG Fuming, ZHAO Hu, DAI Dan, WANG Xueshan. The Development and Properties of PC–W31L Flushing Fluid for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(2): 81-86. DOI: 10.11911/syztjs.2019015 |
[4] | YU Lei, ZHANG Jinghui, LI Gongrang, ZHAO Huaizhen, LIU Tianke. Research and Application of Plugging Drilling Fluid with Low-Activity and High Inhibition Properties[J]. Petroleum Drilling Techniques, 2018, 46(1): 44-48. DOI: 10.11911/syztjs.2018031 |
[5] | HUANG Weian, NIU Xiao, SHEN Qingyun, ZHOU Wei, YANG Shichao, QIU Zhengsong. Anti-Sloughing Drilling Fluid Technology for Deep Sidetracking Wells in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(2): 51-57. DOI: 10.11911/syztjs.201602009 |
[6] | Wei Dianju, Jin Junbin, He Qingshui. Fluid Technology for Drilling Horizontal Wells in the High Permeability Carbonate Reservoir of the YD Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 23-28. DOI: 10.11911/syztjs.201503005 |
[7] | Shu Xiaobo, Meng Yingfeng, Wan Liping, Li Gao, Liu Houbin, Zhang Yurui. Recyclable and Highly Inhibitive Stable Foam Drilling Fluid[J]. Petroleum Drilling Techniques, 2014, 42(4): 69-74. DOI: 10.3969/j.issn.1001-0890.2014.04.013 |
[8] | Lin Yongxue, Wang Xianguang. Development and Reflection of Oil-Based Drilling Fluid Technology for Shale Gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7-13. DOI: 10.3969/j.issn.1001-0890.2014.04.002 |
[9] | Zhao Xin, Qiu Zhengsong, Shi Bingzhong, Lin Yongxue, Gao Shuyang. Experimental Study on High Performance Polyamine Drilling Fluid for Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 35-39. DOI: 10.3969/j.issn.1001-0890.2013.03.007 |
[10] | Wang Lin, Lin Yongxue, Yang Xiaohua, Cai Lishan, Chai Long. Effects of Weighting Agent on Ultra-High Density Drilling Fluid’s Performance[J]. Petroleum Drilling Techniques, 2012, 40(3): 48-53. DOI: 10.3969/j.issn.1001-0890.2012.03.010 |
1. |
李凡,李大奇,刘金华,何仲,张杜杰. 顺北油田二叠系防漏堵漏技术进展及发展建议. 长江大学学报(自然科学版). 2024(02): 76-83 .
![]() | |
2. |
于华伟,赵帅,岳喜洲,李国玉,邵才瑞,肖红兵,陈瑾泓. 基于正则化约束的方位伽马成像测井分辨率提高方法. 测井技术. 2024(03): 301-307 .
![]() | |
3. |
张硕,高文凯,滕鑫淼,丁华华,刘珂. 随钻超声井眼成像技术进展. 科技导报. 2023(09): 75-82 .
![]() | |
4. |
苏义脑,窦修荣,高文凯,刘珂. 油气井随钻测量技术发展思考与展望. 石油科学通报. 2023(05): 535-554 .
![]() | |
5. |
宋晓健,郑邦贤,谭勇志,黄秉亚,马鸿彦,董晨曦. 基于数据融合的近钻头井眼轨迹参数动态测量方法. 石油钻探技术. 2022(01): 38-44 .
![]() | |
6. |
史配铭,倪华峰,石崇东,王学枫,王万庆,屈艳平. 苏里格致密气藏超长水平段水平井钻井完井关键技术. 石油钻探技术. 2022(01): 13-21 .
![]() | |
7. |
李杰,雷志鹏,栗林波,任瑞斌,王飞宇,向学艺. 煤矿瓦斯抽采钻孔孔壁电阻率测量方法. 工矿自动化. 2022(05): 32-38 .
![]() | |
8. |
田恒,刘军涛,刘志毅,刘英明,王才志,魏阿勃. 方位成像测井数据动态色度标定窗口边缘台阶的处理方法. 测井技术. 2022(04): 426-432 .
![]() | |
9. |
张硕,高文凯,滕鑫淼,刘珂,丁华华,禹德洲. 随钻超声井眼成像可行性实验研究. 钻采工艺. 2022(06): 42-47 .
![]() | |
10. |
路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 .
![]() | |
11. |
杨书博,乔文孝,赵琪琪,倪卫宁,吴金平. 随钻前视声波测井钻头前方声场特征研究. 石油钻探技术. 2021(02): 113-120 .
![]() | |
12. |
康正明,柯式镇,李新,倪卫宁,李飞. 基于随钻电阻率成像测井仪的洞穴评价模型理论研究. 中南大学学报(自然科学版). 2021(05): 1542-1551 .
![]() | |
13. |
李继博,钱德儒,郑奕挺,张卫,吴金平. 近钻头伽马高精度实时成像技术研究与应用. 石油钻探技术. 2021(03): 135-141 .
![]() | |
14. |
李洪强,王瑞和. 近钻头伽马成像仪测量结果环境校正方法研究. 石油钻探技术. 2021(03): 142-150 .
![]() | |
15. |
张浩,刘维凯,李光明,白婷婷,徐文. 智能测井背景下差分曼彻斯特编码的应用研究. 当代化工. 2021(06): 1455-1458 .
![]() | |
16. |
药晓江,卢华涛,尚捷,王清华,李洋. 随钻测井仪流道转换器优化设计与数值分析. 石油钻探技术. 2021(05): 121-126 .
![]() | |
17. |
卢欢,牛成民,李慧勇,于海波,张友,刘军钊. 变质岩潜山油气藏储层特征及评价. 断块油气田. 2020(01): 28-33 .
![]() | |
18. |
郑健,高辉,黄禄刚,段军亚,董夺. 随钻方位伽马能谱测井影响因素分析及校正研究. 石油钻探技术. 2020(01): 104-113 .
![]() | |
19. |
郑奕挺,方方,吴金平,李继博,张卫. 近钻头随钻伽马成像系统研制及应用. 东北石油大学学报. 2020(03): 70-76+126+9 .
![]() | |
20. |
康正明,柯式镇,李新,倪卫宁,李飞. 随钻电阻率成像测井仪定量评价地层界面探究. 石油钻探技术. 2020(04): 124-130 .
![]() | |
21. |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议. 石油钻探技术. 2020(04): 11-20 .
![]() | |
22. |
李新,倪卫宁,米金泰,康正明,闫立鹏,宋朝晖. 一种基于非接触耦合原理的新型随钻微电阻率成像仪器. 中国石油大学学报(自然科学版). 2020(06): 46-52 .
![]() |