连续管钻井电动定向器齿轮传动设计与试验

朱玉杰, 胡亮, 贾朋

朱玉杰,胡亮,贾朋. 连续管钻井电动定向器齿轮传动设计与试验[J]. 石油钻探技术,2025,53(2):1−10. DOI: 10.11911/syztjs.2025030
引用本文: 朱玉杰,胡亮,贾朋. 连续管钻井电动定向器齿轮传动设计与试验[J]. 石油钻探技术,2025,53(2):1−10. DOI: 10.11911/syztjs.2025030
ZHU Yujie, HU Liang, JIA Peng. Design and testing of electric whipstock with gear transmission for coiled tubing drilling [J]. Petroleum Drilling Techniques, 2025, 53(2):1−10. DOI: 10.11911/syztjs.2025030
Citation: ZHU Yujie, HU Liang, JIA Peng. Design and testing of electric whipstock with gear transmission for coiled tubing drilling [J]. Petroleum Drilling Techniques, 2025, 53(2):1−10. DOI: 10.11911/syztjs.2025030

连续管钻井电动定向器齿轮传动设计与试验

基金项目: 中国石化科技攻关项目“连续管钻井传测控一体化技术研究”(编号:P20024)和“连续管钻井随钻测控关键技术研究”(编号:P25004)资助。
详细信息
    作者简介:

    朱玉杰(1985—),男,山东临沂人,2008年毕业于山东大学机械设计制造及其自动化专业,2011年获山东大学机械设计及理论专业硕士学位,副研究员,主要从事钻完井井下工具的研究工作。E-mail:zhuyj.sripe@sinopec.com

    通讯作者:

    胡亮,hl9788@sina.com

  • 中图分类号: TE242;TE921+.2

Design and Testing of Electric Whipstock with Gear Transmission for Coiled Tubing Drilling

  • 摘要:

    定向器是连续管钻井中实现定向作业的必备工具,其中电动定向器能够连续准确地调整工具面角,具有很大的技术优势,但受限于井下狭小径向空间和定向作业大扭矩要求,其中关键部件齿轮减速器是设计的难点。设计了一种基于大扭矩电机和多级行星齿轮减速器相配合的电动定向器,对其行星减速齿轮进行了优化,以弯曲疲劳强度安全系数、接触疲劳强度安全系数和输出扭矩3个关键参数的乘积为优化依据,得到了在要求空间下的最优齿数比,并对其进行了有限元强度校核和实际承载能力室内试验。研究结果表明,电动定向器两级行星齿轮减速器的实际承载能力超过800 N·m的设计目标,瞬时可达1 260 N·m,满足现场连续管钻井定向作业要求。研究结果为今后电动定向器设计和加工组装提供了参考。

    Abstract:

    Whipstock is essential for directional drilling with coiled tubing, and the electric whipstock offers great technical advantages with its ability to make continuous and accurate tool face angle adjustments. However, due to narrow downhole radial space and high torque requirements for directional drilling, the design of the key structure in the electric whipstock, namely the gear reducer, becomes a difficult point of development. Therefore, a kind of electric whipstock based on a high-torque motor and multi-stage planetary gear reducer was designed, and the planetary gear reducer was optimized. The product of three key parameters, i.e, bending fatigue strength safety factor, contact fatigue strength safety factor, and output torque, was used as the basis for optimization so that the optimal gear ratio was obtained under the required space, and the finite-element strength calibration and the actual load carrying capacity of the gear reducer tests were carried out. The results show that the actual load bearing capacity of the designed two-stage planetary gear reducer of the electric whipstock exceeds the design target of 800 N·m, and the instantaneous capacity can reach 1 260 N·m, which meets the requirements of directional drilling operation of the coiled tubing drilling in the field. The research results can provide a reference for the design and processing assembly of future electric whipstock.

  • 图  1   行星轮减速器原理示意

    Figure  1.   Planetary gear reducer principle

    图  2   模式转换机构工作过程

    1.输出级行星架;2.上花键副;3.锥形摩擦副;4.锁紧滑套;5.模式转换机构外壳;6.下花键副;7.输出轴

    Figure  2.   Process of mode shifting mechanism

    图  3   连续管钻井电动定向器结构示意

    1.减速电机;2.中间级行星减速器;3.空心轴;4.输出级行星减速器;5.模式转换机构;6.输出轴

    Figure  3.   Structure of electric whipstock for coiled tubing drilling

    图  4   中间级减速器在不同配齿数量下弯曲疲劳强度与接触疲劳强度的安全系数

    Figure  4.   Safety factor for bending and contact fatigue strength of intermediate stage reducers under different tooth numbers

    图  5   输出级减速器在不同配齿数量下优化指标的分布

    Figure  5.   Optimization indicator distribution of output stage reducers under different tooth numbers

    图  6   行星轮系有限元模型

    Figure  6.   Finite element model of planetary gear train

    图  7   无安装误差时不同转角下应力的分布

    Figure  7.   Stress distribution at different rotating angles without installation error

    图  8   有安装误差时不同转角下应力的分布

    Figure  8.   Stress distribution at different rotating angles with installation error

    图  9   不同齿宽太阳轮的接触应力

    Figure  9.   Contact stress of sun gear with different tooth widths

    图  10   接触应力随齿宽变化的曲线

    Figure  10.   Variation of contact stress with tooth width

    图  11   不同啮合状态下轮齿接触应力的分布

    Figure  11.   Contact stress distribution of gear teeth under different meshing states

    图  12   试验装置工作原理

    1.试验机机架;2.加载装置;3.联轴器;4.太阳轮输入轴;5.减速器外壳;6.摩擦块;7.紧定螺钉;8.承载套筒;9.行星架输出轴;10.联轴器;11.扭矩传感器;12.行星架输入轴;13.太阳轮输出轴

    Figure  12.   Working principle of experimental device

    图  13   行星减速器输入扭矩随时间变化的曲线

    Figure  13.   Variation of input torque of planetary reducer with time

    图  14   行星减速器输出扭矩随时间变化的曲线

    Figure  14.   Variation of output torque of planetary reducer with time

  • [1] 贺会群. 连续油管技术与装备发展综述[J]. 石油机械,2006,34(1):1–6. doi: 10.3969/j.issn.1001-4578.2006.01.001

    HE Huiqun. Development of coiled tubing technique and equipment[J]. China Petroleum Machinery, 2006, 34(1): 1–6. doi: 10.3969/j.issn.1001-4578.2006.01.001

    [2] 胡亮,高德利. 连续管钻定向井工具面角调整方法研究[J]. 石油钻探技术,2015,43(2):50–53.

    HU Liang, GAO Deli. Study on a method for tool face re-orientation with coiled tubing drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 50–53.

    [3] 贾涛,张燕萍,吴千里. 连续管侧钻技术的研究及现场试验[J]. 石油机械,2017,45(7):30–33.

    JIA Tao, ZHANG Yanping, WU Qianli. Research and field test of coiled tubing sidetracking technology[J]. China Petroleum Machinery, 2017, 45(7): 30–33.

    [4]

    CHOUDHARY A, MENEZES R, OGRA R, et al. Hybrid drilling rig with rotating coiled tubing[R]. SPE 112888, 2008.

    [5] 李寅,尹方雷,白冬青. 连续管钻井技术研究进展及应用[J]. 焊管,2023,46(7):71–75.

    LI Yin, YIN Fanglei, BAI Dongqing. Research progress and application of coiled tubing drilling technology[J]. Welded Pipe and Tube, 2023, 46(7): 71–75.

    [6] 苗芷芃,万教育,徐华冬,等. 连续管钻井液压定向器的设计与室内试验评价[J]. 石油管材与仪器,2021,7(4):5–8.

    MIAO Zhipeng, WAN Jiaoyu, XU Huadong, et al. Development and laboratory test of continuous pipe drilling orientation tool[J]. Petroleum Tubular Goods & Instruments, 2021, 7(4): 5–8.

    [7]

    ROSS M, ANYANWU O N, KLOTZ C, et al. Rib-steered motor technology: The revolutionary approach extends the coiled tubing drilling application scope[R]. SPE 153573, 2012.

    [8] 邢志晟,孔璐琳,祝传增,等. 连续管钻井肋式定向器执行机构偏置位移优化[J]. 石油机械,2023,51(2):26–32.

    XING Zhisheng, KONG Lulin, ZHU Chuanzeng, et al. Research on optimization of actuator offset displacement of rib-type orientation tool for coiled tubing drilling[J]. China Petroleum Machinery, 2023, 51(2): 26–32.

    [9]

    MEEK D E, LEISING L J, ROWATT J D. Apparatus and method for orienting a downhole tool: US 6419014 B1[P]. 2002-07-16.

    [10]

    ZEGARRA E, MEEK D, UDO C, et al. Intelligent wireless orienter for coiled tubing drilling: development to field test[R]. SPE 74836, 2002.

    [11] 苗芷芃,夏宏南,南丽华,等. 连续管钻井液压定向器的研制[J]. 石油机械,2019,47(6):22–27.

    MIAO Zhipeng, XIA Hongnan, NAN Lihua, et al. Hydraulic orientation tool for coiled tubing drilling[J]. China Petroleum Machinery, 2019, 47(6): 22–27.

    [12] 胡亮,阮臣良,崔晓杰,等. 新型连续管钻井用电液定向装置的研制[J]. 石油钻采工艺,2019,41(6):728–733.

    HU Liang, RUAN Chenliang, CUI Xiaojie, et al. The development of a novel electric-hydraulic orienter used for coiled tubing drilling[J]. Oil Drilling & Production Technology, 2019, 41(6): 728–733.

    [13] 马卫国,王力,王程飞. 连续管钻井电液双螺旋传动定向器的设计[J]. 石油机械,2020,48(4):37–42.

    MA Weiguo, WANG Li, WANG Chengfei. Design of electro-hydraulic double helix drive orienter for coiled tubing drilling[J]. China Petroleum Machinery, 2020, 48(4): 37–42.

    [14] 李猛,贺会群,张云飞,等. 连续管钻井定向器技术现状与发展建议[J]. 石油机械,2015,43(1):32–37. doi: 10.3969/j.issn.1001-4578.2015.01.007

    LI Meng, HE Huiqun, ZHANG Yunfei, et al. The status quo and development suggestion on the coiled tubing drilling orienter[J]. China Petroleum Machinery, 2015, 43(1): 32–37. doi: 10.3969/j.issn.1001-4578.2015.01.007

    [15] 李猛,贺会群,都亚男,等. 连续管钻井电液定向器结构设计[J]. 石油机械,2015,43(11):1–6.

    LI Meng, HE Huiqun, DU Yanan, et al. Structure design of CTD electric-over-hydraulic orienter[J]. China Petroleum Machinery, 2015, 43(11): 1–6.

    [16]

    THATCHER D A A, SZUTIAK G A, LEMAY M M. Integration of coiled tubing underbalanced drilling services to improve efficiency and value[R]. SPE 60708, 2000.

    [17]

    TURNER D R, HARRIS T W R, SLATER M, et al. Electric coiled tubing drilling: A smarter CT drilling system[R]. SPE 52791, 1999.

    [18]

    ANDERSON D R, DOREL A, MARTIN R. A new, integrated, wireline-steerable, bottom hole assembly brings rotary drilling-like capabilities to coiled tubing drilling[R]. SPE 37654, 2008.

    [19] 张展,武文辉. 2K−H型行星齿轮装置设计[J]. 矿山机械,2020,48(11):45–49. doi: 10.3969/j.issn.1001-3954.2020.11.010

    ZHANG Zhan, WU Wenhui. Design of 2K-H planetary gear device[J]. Mining & Processing Equipment, 2020, 48(11): 45–49. doi: 10.3969/j.issn.1001-3954.2020.11.010

    [20]

    OHLINGER J J, GANTT L L, MCCARTY T M. A comparison of mud pulse and E-line telemetry in Alaska CTD operations[R]. SPE 74842, 2002.

    [21] 张展. 实用齿轮设计计算手册[M]. 北京:机械工业出版社,2010:695-698.

    ZHANG Zhan. Practical gear design and calculation[M]. Beijing: China Machine Press, 2010: 695-698.

图(14)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 修回日期:  2025-02-26
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回