Research Status and Development Trend of Drilling Digital Twin Technology
-
摘要:
在第四次工业革命技术浪潮的推动下,油气钻井行业正朝着信息化、数字化、智能化方向快速发展,钻井数字孪生技术成为行业前沿与热点。钻井数字孪生技术是将真实钻井工程映射到虚拟空间,建立集成多学科、多物理量、多尺度的钻井过程全生命周期虚拟仿真模型,实现钻前演练、钻中优化、钻后分析等功能,保障安全、高效、低成本钻进,提高复杂油气储层钻井效率。在分析数字孪生技术在钻井工程中的应用现状的基础上,将钻井数字孪生分为钻机数字孪生和井筒数字孪生,并提出钻井数字孪生五维系统架构;同时,分析了钻井数字孪生未来发展趋势,包括钻井数据实时高效传输、地质模型精细表征、多领域一体化建模与仿真、仿真模型动态自适应更新、机理与数据融合建模、安全高效的人机交互及云边协同软件系统架构,并提出我国钻井数字孪生技术发展的相关建议。研究结果可为钻井数字孪生技术体系的构建提供参考,对于推动钻井行业智能化革新具有一定的指导意义。
Abstract:Driven by the technological impetus of the Fourth Industrial Revolution, the oil and gas drilling industry is rapidly advancing towards informatization, digitization, and intelligentization, with drilling digital twin technology emerging as a frontier and hotspot in the field. Drilling digital twin technology aims to map real drilling operations into virtual space and establish integrated, multi-disciplinary, multi-physical, and multi-scale virtual simulation models throughout the entire lifecycle of drilling. This enables functions such as pre-drilling rehearsal, in-drilling optimization, and post-drilling analysis, ensuring safe, efficient, and cost-effective drilling while enhancing the drilling efficiency of complex oil and gas formation. The current application status of digital twin technology in drilling engineering was introduced, and drilling digital twins were categorized into rig digital twins and wellbore digital twins. A five-dimensional system architecture for drilling digital twins was proposed. Furthermore, future development trends in drilling digital twins were analyzed, including real-time and efficient transmission of drilling data, refinement and quantification of geological models, multi-domain integrated modeling and simulation, dynamic adaptive updating of simulation models, the integration of mechanistic and data-driven modeling, safe and efficient human-machine interaction, and cloud-edge collaborative software system architecture. Relevant suggestions for the development of drilling digital twin technology in China were also proposed. The research findings could serve as a reference for establishing a drilling digital twin technology system and provide guidance for promoting intelligent innovation in the drilling industry.
-
我国碳酸盐岩油气资源丰富,已经成为油气勘探开发的重要领域。碳酸盐岩储层具有埋藏深、超高温、超高压、非均质性强和孔隙缝洞发育等特征,大部分井需要进行酸化压裂才能投产[1-8]。缝洞型碳酸盐岩储层由于存在天然裂缝和孔洞体,孔洞体会导致附近应力场发生改变,从而影响水力裂缝的扩展方式和延伸路径[9]。因此,有必要开展孔洞型碳酸盐岩储层压裂缝扩展机理研究,为经济高效开发碳酸岩盐储层提供技术支持。
目前,国内外学者针对砂岩、页岩等储层水力压裂裂缝起裂扩展机理开展了大量研究工作[10-21]。由于碳酸盐岩储层存在孔洞和天然裂缝,水力裂缝的扩展十分复杂,并不一定沿预设路径进行扩展,难以达到充分改造储层的目的。为此,笔者通过物理模拟试验建立了含孔洞碳酸盐岩定向压裂裂缝扩展模拟方法,结合数值方法研究了水平地应力差异对不同孔洞体特征下水力裂缝扩展路径的作用机制,明确了孔洞体对水力裂缝起裂和扩展的影响。
1. 试样制备与试验方法
1.1 试样制备
碳酸盐岩天然露头不易取得,而且即使取得天然露头,也难以识别与评价大尺寸试样内部原有天然裂缝及孔洞系统分布。因此,采用人工制备的含孔洞碳酸盐岩试样,开展水力压裂试验。利用鸡蛋壳模拟孔洞体,结合缝洞型碳酸盐岩储层的物性参数及地质特征,选用PC52.5R复合硅酸盐水泥和70目石英砂制备试样。通过测试水泥与石英砂按不同质量比制备试样的单轴抗压和抗拉强度,确定水泥与石英砂按1∶1质量比制备尺寸300 mm×300 mm×300 mm含孔洞体特征的人工试样,用于进行孔洞型试样定向压裂试验。制作人工试样时,在模具上标记位置,将蛋壳体放置在预制井筒两侧沿最大水平主应力方向的中间位置,并保证蛋壳体中心位于立方体试样的中心平面上(见图1),采用一次性整体浇筑方式浇筑。
1.2 水力压裂试验方案
为研究水平地应力差异对孔洞型碳酸盐岩压裂缝扩展路径的影响,采用鸡蛋壳预制固定孔洞尺寸的人工试样。结合顺北地区碳酸盐岩储层地应力实际情况,设定室内压裂试验的三向加载应力,在此基础上改变地应力差异系数。试验参数如表1所示,三向地应力加载如图2所示,压裂液黏度为50 mPa·s。
表 1 碳酸盐岩试样压裂试验参数Table 1. Fracturing test parameters of carbonate rock samples试样 应力差
异系数k{\sigma_{⃑\text{v}}} /
MPa{\sigma _{\text{H}}} /
MPa{\sigma _{\text{h}}} /
MPaQ/(mL·min−1) D1 0.36 18 15 11 5 D2 0.25 18 15 12 5 D3 0.15 18 15 13 5 D4 0.07 18 15 14 5 2. 水力压裂试验结果与分析
2.1 泵压曲线特征分析
不同试样的水力裂缝扩展泵压–时间曲线如图3所示。由图3可以看出:试样D1所对应的泵压–时间曲线出现2个峰值,表明泵压在第一次达到峰值时试样发生破裂,但未形成贯穿通道;泵压降低后,随着继续泵注压裂液,泵压升高,再次出现峰值,但低于初次峰值,泵压第二次达到峰值降低后维持在一个相对稳定的值,表明泵压主要克服施加的三向地应力,已经形成贯穿通道。试样D2所对应泵压–时间曲线只出现一个峰值,表明在泵压达到峰值时就形成了贯穿通道,由于围压的存在,泵压维持在一个相对稳定的值。试样D3和D4所对应泵压–时间曲线均出现多个峰值,泵压在第一次达到峰值时裂缝起裂扩展,随后泵压出现多次降低升高的过程,表明水力裂缝在不断扩展,并有新的裂缝通道开启,且试样D4所对应泵压–时间曲线反复降低升高的时间范围大于试样D3。
不同水平主应力差下试样的破裂压力如图4所示。由图4可以看出,随着水平主应力差增大,试样所对应的破裂压力逐渐降低。
2.2 碳酸盐岩裂缝形态特征
图5为试样D1水力裂缝的形态。由图5可以看出,试样D1的水力裂缝沿最大水平主应力方向起裂扩展,遇到孔洞后直接穿过孔洞并继续沿原扩展方向延伸,水力裂缝未发生转向,从而形成一条垂直于最小水平主应力的破裂面。
图6为试样D2水力裂缝的形态。由图6可以看出:试样D2的水力裂缝沿最大水平主应力方向起裂扩展,裂缝扩展到孔洞附近时路径并没有发生改变;由该试样水力裂缝表面示踪剂分布范围可知,孔洞右侧没有示踪剂分布,表明水力裂缝沿着最大水平主应力一直扩展到孔洞体边界,随后因为孔洞体的存在裂缝停止扩展,形成一道垂直于最小水平主应力的破裂面。
试样D3孔洞体周围没有红色示踪剂(见图7),但可以观察到孔洞体的存在,说明水力裂缝扩展到孔洞体附近时,沿最小水平主应力方向发生转向但偏转距离不大。试样D4破裂面左半面完全被红色示踪剂浸染(见图8),且无法观察到孔洞体的存在,说明水力裂缝扩展到孔洞体附近时发生转向,扩展路径完全绕过了孔洞体。可以看出,试样D4水力裂缝的转向效果比试样D3更明显,水力裂缝开始转向的位置与井筒的距离也更近。
2.3 水平主应力差异系数对水力裂缝扩展的影响
总结了不同水平主应力差异系数下水力裂缝的形态,结果见图9。由图9可以看出:水平主应力差异系数k为0.07时,孔洞体的存在改变了水平主应力差对水力裂缝扩展的主导地位;水平主应力差异系数k为0.15时,水平主应力差对水力裂缝的扩展路径起主导作用,由于孔洞体产生的应力集中无法改变水平主应力差对水力裂缝扩展的主控地位,水力裂缝均沿最大水平主应力方向起裂扩展,形成一条完整的垂直于最小水平主应力的破裂面,但不同条件下孔洞体与裂缝的交互作用不同;水平主应力差异系数k为0.25时,水力裂缝扩展到孔洞体边界时会被孔洞体捕捉,不再继续沿原路径向前扩展;水平主应力差异系数k为0.36时,水力裂缝扩展到孔洞体时会穿过孔洞,并继续向前扩展。由以上分析可以看出,水平主应力差异系数为0.15~0.36时,水平主应力差异系数越小,孔洞体对水力裂缝的排斥作用越明显,水力裂缝越容易发生转向,对应的转向半径越大,水力裂缝会绕过孔洞体继续扩展,水力裂缝扩展过程中与最大水平主应力方向上孔洞体的交互作用有绕过孔洞、被孔洞体捕获和穿过孔洞体等3种交互模式。
通过分析不同水平主应力差异系数下含预制孔洞试样水力压裂试验结果,得到水平主应力差异系数对水力裂缝扩展的影响规律:
1)k≤0.15时,水力裂缝遇到孔洞体会产生非平面扩展,且水平主应力差异系数越小,转向半径越大,水力裂缝的形态越复杂。
2)0.15<k<0.36时,水平主应力差会克服孔洞体应力集中形成沿平面扩展的主裂缝,室内试验条件下主裂缝遇到孔洞体后会被孔洞体所捕捉,无法穿过孔洞体继续扩展。
3)k≥0.36时,水平主应力差会克服孔洞体应力集中,水力裂缝沿平面扩展,主裂缝扩展路径上遇到孔洞体后会直接穿过孔洞体继续扩展。随着水平主应力差增大,破裂压力逐渐降低。
3. 孔洞型碳酸盐岩压裂数值模拟分析
水平主应力差对水力裂缝扩展路径影响明显,由于真三轴压裂物理模拟试验无法在更大尺度上模拟水力裂缝的扩展特征,因此利用数值模拟方法分析不同水平主应力差下水力裂缝遇到孔洞体后的扩展形态。目前,多采用有限元法模拟水力压裂裂缝的扩展[16-20, 22],通过离散法将一个实体模型转化为一系列相互连接的微小单元。笔者采用扩展有限元法,建立水力压裂流–固耦合分析模型,分析孔洞型碳酸盐岩不同地应力状态及孔洞体分布特征对水力裂缝扩展路径的影响。
利用扩展有限元法模拟水力压裂,无需提前设置裂缝扩展路径,只需在模型上预制初始裂缝,然后在网格节点内部设置注液点。单一孔洞模型尺寸为40 m×40 m,网格尺寸设置为0.30 m×0.30 m;初始裂缝长2.00 m,垂直于模型左侧边界,在模型中心上方0.40 m处;注液点在网格节点之间。模型边界均采用位移约束,且为渗透边界条件。
3.1 水平主应力差对水力裂缝扩展的影响
以顺北油气田某区块碳酸盐岩储层为例,地应力参数设置情况如表2所示,孔洞半径为3 m,储层渗透率为0.11 mD,压裂液黏度为50 mPa·s,排量为5 m3/min,储层压力梯度为1.78 MPa/100m。模拟不同水平主应力下水力裂缝扩展的特征和路径,结果如图10所示。
表 2 数值模拟地应力参数设置Table 2. Parameter setting of in-situ stress in numerical simulation序号 {\sigma _{\text{H}}} /MPa {\sigma _{\text{h}}} / MPa \Dela \sigma / MPa 泊松比 弹性模
量/GPaBiot
系数1 75 70 5 0.19 38.54 0.87 2 65 10 3 60 15 4 55 20 对比不同水平地应力差下水力裂缝的扩展路径可知(图10):水平主应力差越小,水力裂缝扩展路径偏离最大水平主应力方向的距离越大,孔洞体所产生的应力集中对水力裂缝扩展路径的影响越明显;相反,水平主应力差越大,水力裂缝扩展路径越不容易偏离最大水平主应力方向;水平主应力差大于15 MPa(即水平主应力差异系数大于0.25)时,水力裂缝扩展过程中未发生偏转,一直沿最大水平主应力方向扩展,直到与孔洞体沟通。因此,在只有孔洞存在的条件下,水平主应力差越大(即水平主应力差异系数越大),克服孔洞体应力集中的能力越强,裂缝越易于沟通最大水平主应力方向上的孔洞体。
3.2 孔洞体尺寸对水力裂缝扩展的影响
碳酸盐岩储层中孔洞体形态各异,尺寸大小不一,需要研究其对水力裂缝扩展的影响。设定初始裂缝与最大水平主应力方向夹角为0°,最大水平主应力为75 MPa,最小水平主应力为65 MPa,孔洞内压力设置为50 MPa,模拟孔洞半径分别为1,2,3和4 m时的水力裂缝扩展特征和路径,结果如图11和图12所示。
由图11和图12可以看出:孔洞半径为1 m时,水力裂缝扩张路径不发生偏转,直接沿最大水平主应力方向延伸,直至与孔洞沟通;孔洞半径分别为2,3和4 m时,水力裂缝扩展路径均不同程度地偏离最大水平主应力方向;孔洞半径较小时,水力裂缝偏离最大水平主应力方向的距离较小;随孔洞半径增大,水力裂缝偏离最大水平主应力方向的时间提前,同时偏离最大水平主应力的距离增大。
3.3 连续孔洞体对水力裂缝扩展的影响
碳酸盐岩储层中存在多个连续分布的孔洞时,由单个孔洞体对水力裂缝扩展影响的模拟结果可知,孔洞半径和水平主应力差会影响裂缝与孔洞的交互模式;孔洞半径较小或水平主应力差较大时,水力裂缝会被孔洞体捕捉或直接穿过孔洞体。水平主应力差是水力裂缝扩展的主控因素,也是分析连续分布孔洞体对水力裂缝影响时考虑的首要影响因素。
建立孔洞体连续分布模型,地应力取值见表2,孔洞半径设置为1.50 m,模拟连续分布孔洞体下水力裂缝的扩展特征,结果如图13所示。
从图13可以看出:水平主应力差依然是影响水力裂缝扩展的主控因素;水平主应力差越小(
\Delta \sigma =5 MPa),水力裂缝越容易转向绕过孔洞体;连续孔洞体所产生的应力集中区域也同样连续分布,所以水力裂缝在第1个孔洞被排斥发生转向后,会一直沿着应力集中区域的边界向前扩展;随着水平主应力差增大,能够克服第1个孔洞产生的应力集中,水力裂缝与第1个孔洞出现被孔洞捕获(\Delta \sigma =10 MPa)和穿过孔洞(\Delta \sigma =15 MPa)2种交互模式;穿过孔洞的水力裂缝沿最大水平主应力方向继续扩展,进入第2个孔洞产生的应力集中区域,水力裂缝与第2个孔洞的交互作用同样随水平主应力差变化而变化,会出现绕过孔洞(\Delta \sigma =15 MPa)、被孔洞捕获(\Delta \sigma =20 MPa)和穿过孔洞(\Delta \sigma >20 MPa)3种交互模式。由于水力裂缝扩展中穿过孔洞体伴随着能量的耗散,导致在相同水平主应力差下,水力裂缝穿过第1个孔洞后不一定能够穿过第2个孔洞。孔洞连续分布使应力集中区域增大,若要沟通连续孔洞体,需要进一步开展多因素分析。
4. 结 论
1)孔洞体直接影响水力裂缝的扩展形态与扩展路径。水平主应力差异系数不大于0.15时,水力裂缝遇到孔洞体后会发生非平面扩展,且水平主应力差越小,水力裂缝偏离最大水平主应力方向的距离越大,压裂后水力裂缝的形态越复杂。
2)水平主应力差异系数大于0.15、小于0.36时,水平主应力差会克服孔洞体应力集中的影响形成平面扩展的水力裂缝,但遇到孔洞体后会被孔洞体所捕捉,无法穿过孔洞体继续扩展。
3)水平主应力差异系数不小于0.36时,水平主应力差会克服孔洞体应力集中,使水力裂缝沿平面进行扩展,且遇到孔洞后会直接穿过孔洞体后继续沿原路径扩展;随着水平主应力差增大,水力裂缝所对应的破裂压力逐渐降低。
4)受地应力条件、孔洞体特征等的影响,碳酸盐岩储层中水力裂缝扩展复杂,下一步可参照文中思路,探索碳酸盐岩储层中水力裂缝在不同地应力特征、不规则孔洞和不同压裂施工参数等条件下的扩展规律,为压裂设计提供依据。
-
[1] 门相勇,王陆新,王越,等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探,2021,26(3):1–8. MEN Xiangyong, WANG Luxin, WANG Yue, et al. Strategic pattern of China’s oil and gas exploration and development in the new era and prospects for 2035[J]. China Petroleum Exploration, 2021, 26(3): 1–8.
[2] 邹才能,赵群,王红岩,等. 非常规油气勘探开发理论技术助力我国油气增储上产[J]. 石油科技论坛,2021,40(3):72–79. ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. Theory and technology of unconventional oil and gas exploration and development helps China increase oil and gas reserves and production[J]. Petroleum Science and Technology Forum, 2021, 40(3): 72–79.
[3] 袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12. YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12.
[4] 邹才能,杨智,张国生,等. 非常规油气地质学理论技术及实践[J]. 地球科学,2023,48(6):2376–2397. ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Theory, technology and practice of unconventional petroleum geology[J]. Earth Science, 2023, 48(6): 2376–2397.
[5] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542. SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
[6] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177. WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.
[7] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8.
[8] LI Gensheng, SONG Xianzhi, TIAN Shouceng, et al. Intelligent drilling and completion: a review[J]. Engineering, 2022, 18(11): 33–48.
[9] 李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47. LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47.
[10] 杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16. YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16.
[11] 张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65. ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65.
[12] SUGIURA J, SAMUEL R, OPPELT J, et al. Drilling modeling and simulation: current state and future goals[R]. SPE 173045, 2015.
[13] MAYANI M G, ROMMETVEIT R, OEDEGAARD S I, et al. Drilling automated realtime monitoring using digital twin[R]. SPE 192807, 2018.
[14] LAGRANGE E. Developing a digital twin: the roadmap for oil and gas optimization[R]. SPE 195790, 2019.
[15] THORESEN K E, KYLLINGSTAD Å, HOVLAND S, et al. Using an advanced digital twin to improve downhole pressure control[R]. SPE 194088, 2019.
[16] VARADARAJAN P A, ROGUIN G, ABOLINS N, et al. A digital twin for real-time drilling hydraulics simulation using a hybrid approach of physics and machine learning[R]. OTC 31278, 2021.
[17] SHATIRY M S A, HARUN F, HUSNI Z H, et al. A review of the digital twin technology application in energy industry for performance improvement[J]. AIP Conference Proceedings, 2023, 2827(1): 040012.
[18] 张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报,2020,32(4):1–10. ZHANG Lin. Cold thinking on digital twins and the modeling and simulation techniques behind them[J]. Journal of System Simulation, 2020, 32(4): 1–10.
[19] TAO Fei, LIU Ang, HU Tianliang, et al. Digital twin driven smart design[M]. London: Academic Press, 2020.
[20] 庄存波,刘检华,熊辉,等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统,2017,23(4):753–768. ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753–768.
[21] 张霖,陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报,2021,33(5):995–1007. ZHANG Lin, LU Han. Discussing digital twin from of modeling and simulation[J]. Journal of System Simulation, 2021, 33(5): 995–1007.
[22] 王巍,刘永生,廖军,等. 数字孪生关键技术及体系架构[J]. 邮电设计技术,2021(8):10–14. WANG Wei, LIU Yongsheng, LIAO Jun, et al. Key technology and architecture of digital twin[J]. Designing Techniques of Posts and Telecommunications, 2021(8): 10–14.
[23] 本刊编辑部. 美欧军工领域发力数字孪生技术应用[J]. 国防科技工业,2019(2):36–37. Editorial Department of This Magazine. The US and Europe are making efforts to apply digital twin technology in the military industry[J]. Defence Science & Technology Industry, 2019(2): 36–37.
[24] 方伟光,聂兆伟,刘宸宁,等. 数字孪生驱动的武器装备智能保障技术研究[J]. 系统工程与电子技术,2023,45(4):1247–1260. FANG Weiguang, NIE Zhaowei, LIU Chenning, et al. Research on digital twin driven intelligent weaponry support technology[J]. Systems Engineering and Electronics, 2023, 45(4): 1247–1260.
[25] 胡权. 数字孪生体:第四次工业革命的通用目的技术[M]. 北京:人民邮电出版社,2021. HU Quan. Digital twin: general-purpose technologies (GPT) of the fourth industrial revolution[M]. Beijing: Posts and Telecommunications Press, 2021.
[26] 王林,乔建梅. 国外数字孪生技术发展及对我国的启示[J]. 上海信息化,2021(11):52–55. WANG Lin, QIAO Jianmei. The development of digital twin technology abroad and its implications for China[J]. Shanghai Informatization, 2021(11): 52–55.
[27] 陶飞,程颖,程江峰,等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统,2017,23(8):1603–1611. TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603–1611.
[28] 苏兴华,詹胜,胡刚. 石油钻井数字孪生架构设计[J]. 信息系统工程,2021(11):26–30. SU Xinghua, ZHAN Sheng, HU Gang. Design of digital twin architecture for oil drilling[J]. China CIO News, 2021(11): 26–30.
[29] 杨少龙,孙延浩,向先波,等. 船舶数字孪生及其服务全生命周期研究综述[J]. 舰船科学技术,2020,42(21):1–8. YANG Shaolong, SUN Yanhao, XIANG Xianbo, et al. Ship digital twin and a review of life-cycle service[J]. Ship Science and Technology, 2020, 42(21): 1–8.
[30] 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1):1–18. TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1–18.
[31] ROMMETVEIT R, BJØRKEVOLL K S, HALSEY G W, et al. eDrilling: a system for real-time drilling simulation, 3D visualization, and control[R]. SPE 106903, 2007.
[32] MAYANI M G, SVENDSEN M, OEDEGAARD S I. Drilling digital twin success stories the last 10 years[R]. SPE 191336, 2018.
[33] ROMMETVEIT R, GHOLAMI MAYANI M, NABAVI J, et al. Automatic realtime monitoring of drilling using digital twin technologies enhance safety and reduce costs[R]. SPE 197465, 2019.
[34] KEMAJOU V, SAMUEL R. Real-time well monitoring and engineering analysis of drilling activities: Intelligent rig state detection and prediction with uncertainty[C]//ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2020: V011T11A001.
[35] ISLAM N, ROSENER A, SOUZA W, et al. Smarter well engineering concepts aid in reducing planning time and increasing ROP[C]//First EAGE Digitalization Conference and Exhibition. Odijk: European Association of Geoscientists & Engineers, 2020: 1–5.
[36] BIMASTIANTO P, KHAMBETE S, ALSAADI H, et al. Digital twin implementation on current development drilling, benefits and way forward[R]. SPE 202795, 2020.
[37] 井玉霏. 石油钻机提升系统的数字孪生模型构建[D]. 西安:西安石油大学,2023. JING Yufei. Construction of digital twin model for lifting system of oil drilling rig[D]. Xi'an: Xi'an Shiyou University, 2023.
[38] SRIKONDA R, RASTOGI A, OESTENSEN H. Increasing facility uptime using machine learning and physics-based hybrid analytics in a dynamic digital twin[R]. OTC 30723, 2020.
[39] WU Bo, KOU Yufeng, LIU Jun, et al. Research on the application of digital twin technology in the structural safety assessment of deep-water semi-submersible platforms[R]. ISOPE-I 22-296, 2022.
[40] MURRAY P, WATTIS Z, BAIN B, et al. Towards a digital twin supporting risk based decision making for offshore installations[R]. SPE 195717, 2019.
[41] 蒋爱国,王金江,谷明,等. 数字孪生驱动半潜式钻井平台智能技术应用[J]. 船海工程,2019,48(5):49–52. JIANG Aiguo, WANG Jinjiang, GU Ming, et al. Application of intelligent technology of semi-submersible drilling platform driven by digital twin[J]. Ship & Ocean Engineering, 2019, 48(5): 49–52.
[42] STRAW M, MISTRY R, LEWIS S, et al. Predictive digital twin for performance and integrity[R]. OTC 31863, 2022.
[43] 刘文岭,韩大匡. 数字孪生油气藏:智慧油气田建设的新方向[J]. 石油学报,2022,43(10):1450–1461. LIU Wenling, HAN Dakuang. Digital twin system of oil and gas reservoirs: a new direction for smart oil and gas field construction[J]. Acta Petrolei Sinica, 2022, 43(10): 1450–1461.
[44] SHIRANGI M G, FURLONG E, SIMS K S. Digital twins for well planning and bit dull grade prediction[R]. SPE 200740, 2020.
[45] SHI Jibin, DOURTHE L, LI D, et al. Real-time reamer vibration predicting, monitoring, and decision-making using hybrid modeling and a process digital twin[R]. SPE 208795, 2022.
[46] BOUKREDERA F S, HADJADJ A, YOUCEFI M R. Drill string torsional vibrations modeling with dynamic drill pipe properties measurement and field validation[J]. Journal of Energy Resources Technology, 2022, 144(2): 024502. doi: 10.1115/1.4051299
[47] SHIRANGI M G, ETTEHADI R, ARAGALL R, et al. Digital twins for drilling fluids: advances and opportunities[R]. SPE 199681, 2020.
[48] SAINI G S, ASHOK P, VAN OORT E. Predictive action planning for hole cleaning optimization and stuck pipe prevention using digital twinning and reinforcement learning[R]. SPE 199548, 2020.
[49] ANJOS J L, ARANHA P E, MARTINS A L, et al. Digital twin for well integrity with real time surveillance[R]. OTC 30574, 2020.
[50] KARPOV R B, ZUBKOV D Y, MURLAEV A V, et al. Drilling performance and data quality control with live digital twin[R]. SPE 206527, 2021.
[51] 张鑫鑫,梁博文,张晓龙,等. 智能钻井装备与技术研究进展[J]. 煤田地质与勘探,2023,51(9):20–30. doi: 10.12363/issn.1001-1986.23.06.0324 ZHANG Xinxin, LIANG Bowen, ZHANG Xiaolong, et al. Research progress of intelligent drilling equipment and technology[J]. Coal Geology & Exploration, 2023, 51(9): 20–30. doi: 10.12363/issn.1001-1986.23.06.0324
[52] 赵恩普,刘晓晨. 浅析井场数据远程传输系统的设计与实现[J]. 中国管理信息化,2018,21(18):66–67. ZHAO Enpu, LIU Xiaochen. Design and implementation of remote transmission system for well site data[J]. China Management Informationization, 2018, 21(18): 66–67.
[53] 何治亮,赵向原,张文彪,等. 深层–超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质,2023,44(1):16–33. HE Zhiliang, ZHAO Xiangyuan, ZHANG Wenbiao, et al. Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2023, 44(1): 16–33.
[54] 叶新,潘清,董正宏. 多领域建模仿真方法综述[J]. 软件,2014,35(3):233–236. YE Xin, PAN Qing, DONG Zhenghong. Comparison of multi-domain modeling and simulation technology[J]. Software, 2014, 35(3): 233–236.
[55] ZHANG Chengkai, SONG Xianzhi, SU Yinao, et al. Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110396. doi: 10.1016/j.petrol.2022.110396
[56] 祝兆鹏,张瑞,宋先知,等. 数据拓展和增量更新的井底压力实时预测方法[J]. 石油机械,2023,51(6):1–10. ZHU Zhaopeng, ZHANG Rui, SONG Xianzhi, et al. Real-time prediction of bottom hole pressure based on data expansion and incremental update[J]. China Petroleum Machinery, 2023, 51(6): 1–10.
[57] 肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探,2022,61(2):205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002 XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205–212. doi: 10.3969/j.issn.1000-1441.2022.02.002
[58] KARNIADAKIS G E, KEVREKIDIS I G, LU Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422–440. doi: 10.1038/s42254-021-00314-5
[59] CURINA F, TALAT QUSHCHI A, ALDANY A. A case study for the development and use of a well control simulator as a digital twin of a real scenario[R]. SPE 206530, 2021.
[60] FERRARA P, RICCI MACCARINI G, POLONI R, et al. Virtual reality: new concepts for virtual drilling environment and well digital twin[R]. IPTC 20267, 2020.
[61] CHATAR C, LOKESH R, KAMBOJ V, et al. Extended reality and gamification for drilling[R]. SPE 212532, 2023.
[62] 王文明,侯春来,武振宇,等. 海洋无隔水管修井的数字孪生框架与可视化交互[J]. 计算机集成制造系统,2021,27(2):423–431. WANG Wenming, HOU Chunlai, WU Zhenyu, et al. Frame and visualization for digital twin of marine riserless well intervention[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 423–431.
[63] 李浩,刘根,文笑雨,等. 面向人机交互的数字孪生系统工业安全控制体系与关键技术[J]. 计算机集成制造系统,2021,27(2):374–389. LI Hao, LIU Gen, WEN Xiaoyu, et al. Industrial safety control system and key technologies of digital twin system oriented to human-machine interaction[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 374–389.
[64] 金镭,秦雪伦,江如意,等. 油气行业数字孪生研究述评与展望[J]. 世界石油工业,2022,29(5):17–25. JIN Lei, QIN Xuelun, JIANG Ruyi, et al. Review and prospect of digital twin research in oil and gas industry[J]. World Petroleum Industry, 2022, 29(5): 17–25.
-
期刊类型引用(8)
1. 罗攀登,张士诚,郭天魁,王赫,陈铭,张雄. 缝洞型碳酸盐岩水平井压裂裂缝沟通效果模拟. 深圳大学学报(理工版). 2025(01): 30-40 . 百度学术
2. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
3. 陈凯,段永伟,于雪盟,刘洪霞,王翠翠,朱旭. 松南盆地情字外前缘砂页交互储层可压性评价. 油气井测试. 2024(04): 66-72 . 百度学术
4. 唐可,赵勇,李凯,宁朦,蒲万芬,田开平. 致密油藏压裂井气驱暂堵调剖剂研制与评价. 特种油气藏. 2023(02): 161-167 . 百度学术
5. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 . 百度学术
6. 钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO_2增能压裂裂缝形态研究. 石油钻探技术. 2023(05): 42-48 . 本站查看
7. 冯新根,方俊伟,方裕燕,潘丽娟. 抗高温隔离膜缓速酸液体系研制与性能评价. 石油钻探技术. 2023(06): 99-105 . 本站查看
8. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 . 百度学术
其他类型引用(1)