Processing math: 100%

深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考

金衍, 薄克浩, 张亚洲, 卢运虎

金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
引用本文: 金衍,薄克浩,张亚洲,等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024
Citation: JIN Yan, BO Kehao, ZHANG Yazhou, et al. Advancements and considerations of chemo-mechanical coupling for wellbore stability in deep hard brittle shale [J]. Petroleum Drilling Techniques,2023, 51(4):159-169. DOI: 10.11911/syztjs.2023024

深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考

基金项目: 国家自然科学基金项目“深层脆性页岩井壁失稳的化学断裂机理与控制研究”(编号:52074314)资助
详细信息
    作者简介:

    金衍(1972—),男,浙江临海人,1994年毕业于石油大学(华东)石油工程专业,1998年获石油大学(华东)油气井工程专业硕士学位,2001年获石油大学(北京)油气井工程专业博士学位,教授,博士生导师,主要从事油气井岩石力学与工程方面的研究工作。系本刊编委。E-mail:jiny@cup.edu.cn

  • 中图分类号: TE28

Advancements and Considerations of Chemo-Mechanical Coupling for Wellbore Stability in Deep Hard Brittle Shale

  • 摘要:

    深层及超深层油气资源正逐步成为我国重点勘探开发的关键领域,但钻井过程中深层硬脆性泥页岩地层井壁失稳问题频发,严重制约着深层及超深层油气资源高效开发。力学化学耦合作用下的深层硬脆性泥页岩井壁稳定问题,是一个涉及微观、细观及宏观跨尺度演化的复杂问题。阐述了力学化学耦合作用下硬脆性泥页岩井壁失稳的基本原理,并分别从微观、细观和宏观尺度,总结了硬脆性泥页岩与入井流体间的作用机理、细观结构损伤演化的定量表征、泥页岩水化宏观力学劣化效应及井壁稳定性定量分析方面的研究进展,从考虑化学效应的断裂力学角度,提出了探索硬脆性泥页岩井壁稳定性问题的新思路。

    Abstract:

    The oil and gas resources from deep and ultra-deep reservoirs in China are the most important target of exploration and development. However, pervasive and ubiquitous wellbore instability in hard brittle deep shale seriously compromises the efficient development of deep and ultra-deep oil and gas resources. Wellbore instability in deep hard brittle shale under the chemo-mechanical coupling is a complicated problem involving multi-scale evolution among micro-scale, meso-scale and macro-scale. The basic principle of wellbore instability in hard brittle shale under chemo-mechanical coupling was briefly introduced. In addition, the previous studies on the mechanism between hard brittle shale and drilling fluid, quantitative description of the evolution of damage in mesocosm structures, macroscopic mechanical deterioration of shale after hydration, and quantitative analysis of wellbore stability, were reviewed in terms of micro-scale, meso-scale and macro-scale. Moreover, a new idea was proposed for wellbore stability in hard brittle shale from the perspective of fracture mechanics considering chemical effects.

  • 随着勘探开发对象日益复杂,钻遇复杂储层的概率增大,油(气)水关系复杂程度日益升高,流体准确识别难度不断增大[1-2]。核磁共振测井、成像测井等特殊测井技术能够提供更丰富的参数信息,有利于流体识别,但考虑到勘探成本,特殊测井技术尚不能广泛应用于生产,基于常规测井资料评价流体性质仍然是研究热点[3-5]。此外,复杂储层通常岩性多变、孔隙结构复杂,同时伴有较强的非均质性,导致常规测井数据受多因素影响,其响应特征与流体性质之间存在多解性[5]。对于复杂储层,传统解释方法建立的流体线性识别模型通常识别准确率较低,难以满足生产需要。在实际评价过程中,为提高流体识别的准确率,常需要对大量数据进行深入分析,建立多类图版[5-8],但该方法解释效率低、主观性强,且专业背景门槛高。

    近年来,人工智能兴起,为解决此类问题提供了新思路。相比于传统测井评价方法,人工智能具有处理数据信息量大、维度多、重视数据间关联性,可实时高效交互动态分析,同时保留测井专家的解释经验等优势。因此,机器学习逐渐成为储层评价研究的热点[9-11]。周雪晴等人[12]应用双向长短期记忆网络(Bi-LSTM)建立了碳酸盐岩储层流体高精度识别模型。张银德等人[13]结合测井和试采资料,利用支持向量机方法准确识别了油、气和水层。C.Onwuchekwa[14]对比了K临近、随机森林、支持向量机等6种智能算法在尼日尔三角洲296个油藏流体性质评估中的应用效果。王少龙等人[15]实现了BP神经网络在储层流体中的信息自动化识别。周凡等人[16]采用支持向量机算法,建立了基于阵列感应测井数据的流体识别方法。谭茂金等人[17]采用了BP神经网络、概率神经网络、决策树分类器等多种智能算法构建了分类委员会机器和回归委员会机器,实现了储层流体的识别和储层参数的预测。上述方法在不同研究区具有一定的应用效果,但仍存在一定的局限性:在分类较多时,决策树法的错误率较高;神经网络方法中常用的是BP网络,但对于最优参数和最优网络结构的确定尚无十分有效的解决方法,如果训练样本过少,容易出现过拟合问题,导致准确率下降;支持向量机算法在实际应用中,经常遇到不平衡数据集或高精度要求等问题[18]

    因此,为更全面地挖掘学习算法能力,保证稳定的学习性能,笔者以大牛地气田低阻气藏这一具有代表性的复杂储层为研究对象,将AdaBoost (adaptive boosting)算法应用于低阻气层的流体评价中,基于地质成因优化了模型输入参数,对不同基本分类器集成的机器学习算法进行了评价和优选,以提高复杂储层流体识别的准确率和解释效率。

    AdaBoost算法属boosting算法族,其预测精准、算法简单,在诸多领域都有成功应用,尤其在处理分类问题和模式识别方面更为突出[19-21]。其核心思想是通过调整样本分布和弱分类器权值,自动从弱分类器空间中筛选出若干关键弱分类器,集成为一个分类精度高的强分类器,从而打破分类器在已有样本分布上的优势,提高机器学习的泛化能力。

    AdaBoost算法迭代通过改变训练集中各样本的权重实现,根据每次训练集中各样本是否分类正确及上次总体分类的准确率,综合确定各样本的权重,将修改过权重的新数据集送给下层分类器进行训练,并将每次训练所得分类器融合起来,形成最终的决策分类器(见图1)。 其具体流程如下:

    图  1  Adaboost算法基本思路
    Figure  1.  Basic flow of the AdaBoost algorithm

    1)确定一个弱学习算法和训练集:{(x1y1),…,(xnyn)},x1Xy1Y={−1,+1},XY表示某个域或实例空间。

    2)初始化样本训练集的权重分布。赋予各训练样本相同的初始权重,即wi=1/n,则样本集的初始权重分布为:

    D1=(w1,w2,...,wn)=(1n,...,1n) (1)

    式中:D1为训练样本集的初始权重;w1, w2,…,wn分别为每一个样本的初始权重;n为训练集样本数量。

    3)使用带权重的样本训练集学习,选取使误差率最低的阈值设计基本分类器,得到基本分类器hm(x)

    hm(x):x{1,+1}m=1,2,T (2)

    样本训练集的分类误差率为:

    em=ni=1w(m)i[hm(xi)yi] (3)

    4)弱分类器的权重为:

    αm=Lr(ln1emem+ln(R1)) (4)

    式中:Lr为学习率;R为分类数量。

    弱分类器的误差率越低,权重就会越大。

    5)更新样本的权重:

    wT=wT1exp(αTF)ZT (5)

    其中,ZT为归一化因子,其计算公式为:

    ZT=mi=1wTi (6)

    采用F条件代表弱分类器的预测结果。如预测值和真实值相同,即预测正确,则F=0,代入式(6)后权重相对变小或不变。如预测值和真实值不同,则预测错误,此时F =1,代入式(6)后权重增大。因此,可根据样本权重判断预测结果的准确性,若样本权重增大,则弱分类器预测错误,此样本需要被其他弱分类器重点关注。

    6)将所有弱分类器用下式加权求和:

    f(x)=Tm=1αmhm(x) (7)

    得到最终分类器为:

    H(x)=sign(f(x))=sign(Tm=1αmhm(x)) (8)

    式中:T为迭代次数;αm为弱分类器的权重。

    大牛地气田位于鄂尔多斯盆地伊陕斜坡北部东段,局部构造不发育,气田中高阻气层与低阻气层并存,其中低阻气藏在上古生界广泛发育[22-23]。上古生界典型流体参数见表1。从表1可以看出,水层电阻率分布在14.37~17.92 Ω·m,电阻增大率为0.96~1.23。低阻气层电阻率为26.84~30.37 Ω·m,电阻增大率为1.79~2.02,其不足水层电阻增大率的3倍。大量试气结果表明,低阻气层也可形成高产,如2526~2556 m井段,试气无阻流量为27 000 m3/d,不产水,显示出良好的产能。

    表  1  大牛地气田上古生界典型流体参数
    Table  1.  Typical fluid parameters of the Upper Paleozoic in Daniudi Gas Field
    井名层位井段/m孔隙度, %电阻率/(Ω·m)电阻增大率产水量/m3无阻流量/
    (104m3·d–1
    解释结论
    X1盒32219.6~2226.010.7914.400.966.200水层
    X2盒32605.4~2617.09.7218.501.230.500水层
    X3盒12526.1~2534.011.4330.402.0202.70低阻气层
    盒12535.5~2541.810.3928.101.87
    山22543.9~2556.111.7526.801.79
    X4山22741.8~2752.011.1237.502.5302.06低阻气层
    X5盒32697.1~2703.68.58324.3021.62016.51中高阻气层
    X6山22462.0~2478.46.6966.894.4600.96中高阻气层
    X7山22486.0~2497.08.5080.495.37
    X8山12852.1~2858.99.6417.921.196.342.50含气水层
    X9盒32472.3~2479.311.9216.331.093.72含气水层
    下载: 导出CSV 
    | 显示表格

    上古生界不同流体储层的电阻率和声波时差交会图见图2。由图2可知,该区电性复杂,不同流体测井响应差异不明显,仅依靠传统电阻率方法将低估或遗漏低阻气层,难以准确识别流体。

    图  2  大牛地气田上古生界流体识别交会图
    Figure  2.  Cross plot for fluid identification of the Upper Paleozoic in Daniudi Gas Field

    考虑到训练数据对智能模型的评价效果有较大影响,首先对低阻气层的成因进行分析,选取对流体性质敏感的参数作为训练样本,优化模型输入参数。深入分析相关地质、录井、岩心及试油资料,得出大牛地气田上古生界低阻气层的主要成因为:

    1)储层孔隙结构复杂,相比于高阻气层以大孔为主,低阻气层微孔普遍较为发育导致束缚水饱和度增大,气层电阻率降低,形成低阻气层。

    2)岩性变细、泥质与黏土所产生的附加导电作用导致形成低阻气层。

    3)微裂缝发育导致钻井液滤液侵入并驱替井壁附近岩石中的天然气,使气层电阻率明显降低。

    4)储层沉积、成藏中后期地层水活动,造成气、水层矿化度差异,导致形成低阻气层。

    孔隙结构复杂、岩石颗粒粒度小等因素导致束缚水饱和度高,大量微孔导电,这是形成低阻气层的主导因素。因此,将对低阻油藏流体识别敏感的束缚水饱和度参数作为模型输入参数,可提高模型训练效果。对于导电矿物、钻井液侵入等其他低阻成因,尝试利用智能算法从测井曲线中提取敏感参数,实现对流体更好的表征。结合核磁共振、压汞和相渗等资料获得了大牛地气田上古生界束缚水饱和度,观察其与孔隙度的交会图(见图3)可见,采用乘幂法的拟合趋势较符合实际地层含油气趋势,拟合得到的经验公式为:

    图  3  大牛地气田上古生界束缚水饱和度和孔隙度交会图
    Figure  3.  Cross plot of irreducible water saturation and porosity of the Upper Paleozoic in Daniudi Gas Field
    Swi=175.24ϕ0.6552 (9)

    式中:Swi为束缚水饱和度,%;ϕ为孔隙度,%。

    采用式(9)计算了研究区26口重点井的束缚水饱和度,选取与流体性质相关性较高的5条测井曲线:自然伽马(GR)、自然电位(SP)、声波时差(AC)、密度(DEN)和深侧向电阻率(RLLD)曲线和1个解释参数(孔隙度(POR))作为模型输入参数,共选取397个层累计10342个样本点,不同流体储层测井响应特征值分布见表2

    表  2  4类储层的常规测井响应值分布
    Table  2.  Distribution of conventional log response eigenvalues of four types of reservoirs
    储层类型测井响应值自然伽马/API中子,%密度/(g·cm–3声波时差(μs·m–1深电阻率/(Ω·m)孔隙度,%束缚水饱和度,%
    中高阻气层范围
    均值
    40.7~78.6
    58.9
    15.1~17.3
    16.4
    2.30~2.48
    2.41
    197.8~242.2
    218.7
    41.8~445.1
    112.7
    8.4~17.4
    15.3
    26.9~43.4
    29.3
    低阻气层范围
    均值
    44.2~73.8
    63.4
    8.4~14.2
    11.8
    2.33~2.53
    2.44
    214.2~263.8
    242.5
    16.7~46.1
    29.1
    6.7~12.4
    10.1
    33.7.9~50.4
    38.5
    含气水层范围
    均值
    44.6~74.3
    62.3
    11.7~16.1
    13.9
    2.42~2.49
    2.45
    222.2~249.7
    236.5
    10.7~31.8
    21.1
    6.3~15.4
    11.3
    29.2~52.4
    35.8
    水层范围
    均值
    46.3~84.5
    68.6
    6.3~13.4
    9.9
    2.40~2.54
    2.46
    205.2~262.8
    238.8
    10.5~28.2
    15.8
    5.2~14.6
    9.2
    30.25~59.5
    40.9
    下载: 导出CSV 
    | 显示表格

    不同测井其特征取值范围不同,如某一特征的方差远大于其他特征的方差,它将会在算法学习中占据主导位置,导致学习器不能按期望学习其他特征,这将导致最后模型收敛速度慢甚至不收敛,因此,需要对此类特征数据进行标准化,处理公式为:

    Z=xμσ (10)

    式中:x为特定测井特征值;Z为标准化后的测井特征值;μ为所有特征样本的均值;σ为所有特征样本的标准差。

    经处理后的数据符合标准正态分布,即均值为0,标准差为1。综合专家解释结论和试油试采结果,将中高阻气层、低阻气层、含气水层和水层等4类储层分别特征标注为1、2、3和4。选取全部样本的70%作为数据集建立流体识别模型,剩余30%作为验证集验证模型效果。

    AdaBoost模型主要对基本分类器进行集成,结合不同基本分类器的原理差异,选取逻辑回归、决策树、支持向量机和人工神经网络4种基本分类器。利用数据集样本对模型不断迭代优化,最终确定各监督模型的最优参数值(见表3)。

    表  3  4个监督模型的重要参数和最优参数值
    Table  3.  Important parameters and their optimal values of four supervision models
    机器学习模型优化参数搜索范围最优参数
    逻辑回归(LR)正则化策略
    惩罚参数
    11/12
    0.1~10
    12
    1.693
    决策树(DT)树的最大深度
    特征选择准则
    基尼系数/信息熵
    0~10
    信息熵
    3
    支持向量机(SVM)核函数的γ参数
    惩罚参数
    0.1~10
    0.1~100
    2.015
    15
    神经网络(NN)最大层数
    最大隐层数量
    3~8
    10~200
    4
    100
    下载: 导出CSV 
    | 显示表格

    采用预测准确率和F1得分2参数评估算法模型效果。其中F1得分为精确率和召回率的调和平均,当精确率和召回率发生冲突时,可利用F1得分综合评价分类模型的效果。训练结束后,采用验证集数据验证模型效果,结果见图4表4所示。由图4表4可知,基于Adaboost算法将弱分类器联级成强分类器,其预测准确率较单一分类器有明显提升。但基本分类器的选取对算法准确率有较大影响,其中以决策树为基本分类器集成的强分类器的预测准确率达86.5%,预测效果最好,F1得分最高。

    图  4  不同模型的预测准确率与F1得分
    Figure  4.  Prediction accuracy and F1 value of different models
    表  4  不同模型的流体识别结果
    Table  4.  Fluid identification results from different models
    试油试采结果总层数/个AB-LR模型 AB-DT模型 AB-SVC模型 AB-NN模型
    正确样本/个符合率, % 正确样本/个符合率,% 正确样本/个符合率,% 正确样本/个符合率,%
    中高阻气层2323100 23100 23100 23100
    低阻气层382668.43181.62873.72378.9
    含气水层281760.72382.12175.03078.6
    水层302376.72686.72480.02276.7
    下载: 导出CSV 
    | 显示表格

    以研究区X1井和X2井为例,说明以决策树为基本分类器的强分类器模型(AB-DT)的流体识别结果(见图5)。X1井所示层段孔隙度为8%~15%,上部11号层电阻率均值约为90 Ω·m,为典型高阻气层,智能模型识别和专家结论均为气层;下部井段自然电位呈负异常,电阻率为30~40 Ω·m,为低阻–高孔储层,12号、13号层束缚水饱和度均较高,约70%,智能模型识别结果为低阻气层,试气结果显示不产水,产气量为14200 m3/d,与智能模型识别结果一致。X2井所示层段孔隙度为5%~9%,物性相对较差,电阻率均值约200 Ω·m,该井2771.0~2 786.0 m井段多层合试,产气量5800 m3/d,产水量23000 m3/d。4号、5号层智能模型识别结果为含气水层,与专家解释结论和试油结果均较为一致,模型应用效果较好。

    图  5  最优智能模型流体识别效果
    Figure  5.  Fluid identification results from the optimal intelligent model

    1)结合研究区储层流体性质识别难点与主控因素,优化模型输入参数,采用Adaboost迭代算法联级弱分类器,可提高机器学习模型的预测准确度。

    2)针对大牛地气田低阻气藏流体识别问题,以决策树作为弱分类器集成的强分类器取得了最佳识别效果,平均识别准确率高达86.5%,展现了机器学习等智能算法在提高储层评价效率和解释符合率方面的潜力。

    3)目前测井行业的人工智能主要以数据为驱动,在今后的研究中,除攻关算法外,还应深入分析评价难题的成因机理,优选模型输入参数,同时加强测井知识图谱和专家经验库的建立,注重多源多尺度信息的融合,建立地质成因约束下的智能模型。

  • 图  1   硬脆性泥页岩微裂纹等缺陷多尺度演化诱导的井壁垮塌示意

    Figure  1.   Wellbore collapse induced by multi-scale evolution of microcracks and other defects in hard brittle shale

    图  2   蒙脱石层间域内吸附不同数量水分子后的微观构象[6]

    Figure  2.   Microscopic conformation of montmorillonite absorbing different amounts of water molecules in the interlaminar domain[6]

    图  3   龙马溪组硬脆性页岩水化前后二维和三维CT成像[44]

    Figure  3.   2D and 3D CT images of hard brittle shale in Longmaxi Formation before and after hydration [44]

    图  4   平行层理取心页岩水化的细观过程(120 ℃,3.5 MPa)[53]

    Figure  4.   Mesoscopic process of hydration of shale core with parallel bedding (120 ℃,3.5 MPa) [53]

  • [1] 陈勉,金衍. 深井井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2005,33(5):28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    CHEN Mian, JIN Yan. Advances and developmental trend of the wall stability technique[J]. Petroleum Drilling Techniques, 2005, 33(5): 28–34. doi: 10.3969/j.issn.1001-0890.2005.05.007

    [2] 曾义金,刘建立. 深井超深井钻井技术现状和发展趋势[J]. 石油钻探技术,2005,33(5):1–5.

    ZENG Yijin, LIU Jianli. Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2005, 33(5): 1–5.

    [3] 徐同台. 井壁稳定技术研究现状及发展方向[J]. 钻井液与完井液,1997,14(4):36–43.

    XU Tongtai. On wellbore stability technology[J]. Drilling Fluid & Completion Fluid, 1997, 14(4): 36–43.

    [4] 邓虎,孟英峰. 泥页岩稳定性的化学与力学耦合研究综述[J]. 石油勘探与开发,2003,30(1):109–111.

    DENG Hu, MENG Yingfeng. A discussion on shale stability coupling with mechanics and chemistry[J]. Petroleum Exploration and Development, 2003, 30(1): 109–111.

    [5] 徐四龙,余维初,张颖. 泥页岩井壁稳定的力学与化学耦合(协同)作用研究进展[J]. 石油天然气学报,2014,36(1):151–153.

    XU Silong, YU Weichu, ZHANG Ying. Research progress of mechanic and chemical coupling for shale wellbore stability[J]. Journal of Oil and Gas Technology, 2014, 36(1): 151–153.

    [6]

    ZHANG Yayun, GAO Shuyang, DU Xiaoyu, et al. Molecular dynamics simulation of strength weakening mechanism of deep shale[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106123. doi: 10.1016/j.petrol.2019.05.074

    [7]

    SKIPPER N T, REFSON K, MCCONNELL J D C. Computer simulation of interlayer water in 2∶1 clays[J]. The Journal of Chemical Physics, 1991, 94(11): 7434–7445. doi: 10.1063/1.460175

    [8]

    BOEK E S, COVENEY P V, SKIPPER N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor[J]. Journal of the American Chemical Society, 1995, 117(50): 12608–12617. doi: 10.1021/ja00155a025

    [9]

    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium-montmorillonite hydrates[J]. Langmuir, 1998, 14(5): 1201–1207. doi: 10.1021/la9704720

    [10]

    CHANG F R C, SKIPPER N T, SPOSITO G. Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates[J]. Langmuir, 1997, 13(7): 2074–2082. doi: 10.1021/la9603176

    [11]

    CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734–2741. doi: 10.1021/la00007a064

    [12] 徐加放,付元强,田太行,等. 蒙脱石水化机理的分子模拟[J]. 钻井液与完井液,2012,29(4):1–4.

    XU Jiafang, FU Yuanqiang, TIAN Taihang, et al. Molecular simulation on mechanism of montmorillonite hydration[J]. Drilling Fluid & Completion Fluid, 2012, 29(4): 1–4.

    [13]

    YOUNG D A, SMITH D E. Simulations of clay mineral swelling and hydration:   Dependence upon interlayer ion size and charge[J]. The Journal of Physical Chemistry B, 2000, 104(39): 9163–9170. doi: 10.1021/jp000146k

    [14] 王进,王军霞,曾凡桂. 钾基蒙脱石的分子力学和分子动力学模拟[J]. 硅酸盐学报,2009,37(4):554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    WANG Jin, WANG Junxia, ZENG Fangui. Simulation of molecular mechanics and molecular dynamics of potassium montmorillonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(4): 554–561. doi: 10.3321/j.issn:0454-5648.2009.04.012

    [15]

    YOTSUJI K, TACHI Y, SAKUMA H, et al. Effect of interlayer cations on montmorillonite swelling: Comparison between molecular dynamic simulations and experiments[J]. Applied Clay Science, 2021, 204: 106034. doi: 10.1016/j.clay.2021.106034

    [16]

    AKINWUNMI B, KPORHA F E A, HIRVI J T, et al. Atomistic simulations of the swelling behaviour of Na-montmorillonite in mixed NaCl and CaCl2 solutions[J]. Chemical Physics, 2020, 533: 110712. doi: 10.1016/j.chemphys.2020.110712

    [17] 黄小娟,徐加放,丁廷稷,等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺,2017,39(4):442–448.

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4): 442–448.

    [18]

    PENG Chenliang, WANG Guanshi, QIN Lei, et al. Molecular dynamics simulation of NH4-montmorillonite interlayer hydration: Structure, energetics, and dynamics[J]. Applied Clay Science, 2020, 195: 105657. doi: 10.1016/j.clay.2020.105657

    [19]

    XIE Gang, XIAO Yurong, DENG Mingyi, et al. Investigation on the inhibition mechanism of alkyl diammonium as montmorillonite swelling inhibitor: experimental and molecular dynamics simulations[J]. Fuel, 2020, 282: 118841. doi: 10.1016/j.fuel.2020.118841

    [20]

    PENG Chenliang, WANG Guanshi, ZHANG Chunlei, et al. Molecular dynamics simulation of NH4+-smectite interlayer hydration: Influence of layer charge density and location[J]. Journal of Molecular Liquids, 2021, 336: 116232. doi: 10.1016/j.molliq.2021.116232

    [21] 刘星雨,马超,谢龙龙,等. 甲酸钾抑制蒙脱石水化机理的分子动力学模拟[J]. 钻井液与完井液,2022,39(4):415–422.

    LIU Xingyu, MA Chao, XIE Longlong, et al. Molecular dynamics simulation of potassium formate’s ability to inhibit hydration of montmorillonite[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 415–422.

    [22] 徐加放,顾甜甜,沈文丽,等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版),2016,40(2):83–90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 83–90.

    [23]

    HAN Zongfang, CUI Yang, MENG Qi, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: a molecular dynamics study[J]. Chemical Physics Letters, 2021, 781: 138982. doi: 10.1016/j.cplett.2021.138982

    [24]

    DRITS V A, ZVIAGINA B B, MCCARTY D K, et al. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite[J]. American Mineralogist, 2010, 95(2/3): 348–361.

    [25] 王冠,李桂臣,孙元田,等. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技,2017(3):16–22.

    WANG Guan, LI Guichen, SUN Yuantian, et al. Study on molecular simulation of illite on hydration mechanism and water absorption behavior[J]. Coal Science & Technology Magazine, 2017(3): 16–22.

    [26] 刘勇,周国庆,况联飞. 常温与低温下的伊利石水化性能分子动力学模拟[J]. 煤炭技术,2018,37(10):353–356.

    LIU Yong, ZHOU Guoqing, KUANG Lianfei. Molecular dynamics simulation of hydration properties of illite at normal and low temperatures[J]. Coal Technology, 2018, 37(10): 353–356.

    [27] 刘梅全,蒲晓林,张谦,等. 无机盐作用下伊利石水化特性的分子模拟[J]. 西南石油大学学报(自然科学版),2021,43(4):81–89.

    LIU Meiquan, PU Xiaolin, ZHANG Qian, et al. Molecular simulation for inorganic salts inhibition mechanism on illite hydration[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 81–89.

    [28]

    GHASEMI M, SHARIFI M. Effects of layer-charge distribution on swelling behavior of mixed-layer illite-montmorillonite clays: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2021, 335: 116188. doi: 10.1016/j.molliq.2021.116188

    [29]

    CHEN Jun, MIN Fanfei, LIU Lingyun, et al. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations[J]. Applied Surface Science, 2019, 476: 6–15. doi: 10.1016/j.apsusc.2019.01.081

    [30]

    CHEN Zhongcun, ZHAO Yaolin, XU Xuewen, et al. Structure and dynamics of Cs+ in kaolinite: insights from molecular dynamics simulations[J]. Computational Materials Science, 2020, 171: 109256. doi: 10.1016/j.commatsci.2019.109256

    [31]

    CHANG Ming, MA Xiaomin, FAN Yuping, et al. Adsorption of different valence metal cations on kaolinite: results from experiments and molecular dynamics simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656(Part A): 130330.

    [32]

    ZHENG Y, ZAOUI A. Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23): 5994–6001. doi: 10.1016/j.physa.2013.07.019

    [33]

    CAMARA M, XU Jiafang, WANG Xiaopu, et al. Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure[J]. Applied Clay Science, 2017, 146: 206–215. doi: 10.1016/j.clay.2017.05.045

    [34] 张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018,46(10):1489–1498.

    ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489–1498.

    [35] 况联飞,周国庆,商翔宇,等. 钠蒙脱土晶层间水分子结构分子动力学模拟[J]. 煤炭学报,2013,38(3):418–423.

    KUANG Lianfei, ZHOU Guoqing, SHANG Xiangyu, et al. Molecular dynamic simulation of interlayer water structure in Na-montmorillonite[J]. Journal of China Coal Society, 2013, 38(3): 418–423.

    [36]

    PENG Jianfei, YI Hao, SONG Shaoxian, et al. Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: a molecular dynamic study[J]. Results in Physics, 2019, 12: 113–117. doi: 10.1016/j.rinp.2018.11.011

    [37] 石秉忠,夏柏如. 硬脆性泥页岩水化过程的微观结构变化[J]. 大庆石油学院学报,2011,35(6):28–34.

    SHI Bingzhong, XIA Bairu. The variation of microstructures in the hard brittle shale hydration process[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 28–34.

    [38] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137–142. doi: 10.1038/aps.2011.157

    SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1): 137–142. doi: 10.1038/aps.2011.157

    [39] 马天寿,陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发,2014,41(2):227–233.

    MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2): 227–233.

    [40] 林永学,高书阳,曾义金. 基于层析成像技术的页岩微裂缝扩展规律研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114606.

    LIN Yongxue, GAO Shuyang, ZENG Yijin. Study of shale micro-fracture propagation based on tomographic technique[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114606.

    [41]

    ZHANG Shifeng, SHENG J J. Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 1–7. doi: 10.1016/j.ijrmms.2017.03.011

    [42] 贾利春,张超平,周井红. 结合CT技术的页岩水化损伤规律研究[J]. 断块油气田,2017,24(2):214–217.

    JIA Lichun, ZHANG Chaoping, ZHOU Jinghong. Hydration damage characteristics of shale by using CT scanning technology[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 214–217.

    [43] 高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术,2018,46(3):20–26.

    GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new method for evaluating the characteristics of hydration in the Longmaxi shale gas reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.

    [44]

    WANG Qing, LYU Chaohui, COLE D R. Effects of hydration on fractures and shale permeability under different confining pressures: An experimental study[J]. Journal of Petroleum Science and Engineering, 2019, 176: 745–753. doi: 10.1016/j.petrol.2019.01.068

    [45] 王良,马辉运,韩慧芬,等. 长宁区块页岩水化起裂机理及应用[J]. 钻采工艺,2020,43(增刊1):27–30.

    WANG Liang, MA Huiyun, HAN Huifen, et al. Mechanism of shale hydration cracking and application at Changning Block[J]. Drilling & Production Technology, 2020, 43(supplement1): 27–30.

    [46] 曾凡辉,张蔷,陈斯瑜,等. 水化作用下页岩微观孔隙结构的动态表征:以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业,2020,40(10):66–75.

    ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: a case study of Longmaxi Formation shale in the Changning Area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66–75.

    [47] 朱宝龙,李晓宁,巫锡勇,等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报,2015,34(增刊2):3896–3905.

    ZHU Baolong, LI Xiaoning, WU Xiyong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(supplement2): 3896–3905.

    [48] 刘敬平,孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液,2016,33(3):25–29.

    LIU Jingping, SUN Jinsheng. Borehole wall collapse and control in shale gas well drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 25–29.

    [49] 刘向君,熊健,梁利喜. 龙马溪组硬脆性页岩水化实验研究[J]. 西南石油大学学报(自然科学版),2016,38(3):178–186.

    LIU Xiangjun, XIONG Jian, LIANG Lixi. Hydration experiment of hard brittle shale of the Longmaxi Formation[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 178–186.

    [50]

    LIU Xiangjun, ZENG Wei, LIANG Lixi, et al. Experimental study on hydration damage mechanism of shale from the Longmaxi Formation in southern Sichuan Basin, China[J]. Petroleum, 2016, 2(1): 54–60. doi: 10.1016/j.petlm.2016.01.002

    [51]

    WANG Yuepeng, LIU Xiangjun, LIANG Lixi, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103

    [52] 卢运虎,梁川,金衍,等. 高温下页岩水化损伤的各向异性实验研究[J]. 中国科学:物理学 力学 天文学,2017,47(11):114614.

    LU Yunhu, LIANG Chuan, JIN Yan, et al. Experimental study on hydration damage of anisotropic shale under high temperature[J]. SCIENTIA SINICA: Physica, Mechanica & Astronomica, 2017, 47(11): 114614.

    [53]

    LU Yunhu, ZENG Lingping, JIN Yan, et al. Effect of shale anisotropy on hydration and its implications for water uptake[J]. Energies, 2019, 12(22): 4225. doi: 10.3390/en12224225

    [54] 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6):1075–1081. doi: 10.11698/PED.2018.06.16

    XUE Huaqing, ZHOU Shangwen, JIANG Yali, et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development, 2018, 45(6): 1075–1081. doi: 10.11698/PED.2018.06.16

    [55] 隋微波,田英英,姚晨昊. 页岩水化微观孔隙结构变化定点观测实验[J]. 石油勘探与开发,2018,45(5):894–901.

    SUI Weibo, TIAN Yingying, YAO Chenhao. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development, 2018, 45(5): 894–901.

    [56] 吴小林,刘向君. 泥页岩水化过程中声波时差变化规律研究[J]. 西南石油大学学报,2007,29(增刊2):57–60.

    WU Xiaolin, LIU Xiangjun. The process and microscopic mechanism of shale hydration[J]. Journal of Southwest Petroleum University, 2007, 29(supplement2): 57–60.

    [57] 王光兵,刘向君,梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程,2017,17(36):60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    WANG Guangbing, LIU Xiangjun, LIANG Lixi. Ultrasonic transmission experimental investigation on hydration of hard brittle shale[J]. Science Technology and Engineering, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010

    [58] 王萍,屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687–693.

    WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3): 687–693.

    [59] 钱斌,朱炬辉,杨海,等. 页岩储集层岩心水化作用实验[J]. 石油勘探与开发,2017,44(4):615–621. doi: 10.1016/S1876-3804(17)30070-8

    QIAN Bin, ZHU Juhui, YANG Hai, et al. Experiments on shale reservoirs plugs hydration[J]. Petroleum Exploration and Development, 2017, 44(4): 615–621. doi: 10.1016/S1876-3804(17)30070-8

    [60]

    WANG Ping, QU Zhan, CHARALAMPIDOU E M. Shale hydration damage captured by nuclear magnetic resonance[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1129–1135. doi: 10.1080/01932691.2018.1496839

    [61] 余致理,郭高峰,余恒,等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版),2022,37(1):44–50.

    YU Zhili, GUO Gaofeng, YU Heng, et al. Damage of hydration effect to micropore structure of shale[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(1): 44–50.

    [62]

    MA Tianshou, YANG Chunhe, CHEN Ping, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204–214. doi: 10.1016/j.jngse.2015.11.025

    [63] 路保平,林永学,张传进. 水化对泥页岩力学性质影响的实验研究[J]. 地质力学学报,1999,5(1):65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    LU Baoping, LIN Yongxue, ZHANG Chuanjin. Laboratory study on effect of hydration to shale mechanics[J]. Journal of Geomechanics, 1999, 5(1): 65–70. doi: 10.3969/j.issn.1006-6616.1999.01.011

    [64] 黄进军,杨香丽,王福林,等. 处理剂对泥页岩抗压强度影响的实验研究[J]. 西南石油大学学报(自然科学版),2009,31(3):95–98.

    HUANG Jinjun, YANG Xiangli, WANG Fulin, et al. Experimental study on the effect of treatment agent on argillutits’ compressive strength[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(3): 95–98.

    [65] 刘向君,刘洪,罗平亚,等. 钻井液浸泡对库车组泥岩强度的影响及应用研究[J]. 岩石力学与工程学报,2009,28(增刊2):3920–3925.

    LIU Xiangjun, LIU Hong, LUO Pingya, et al. Research on effect of drilling fluid on Kuqa shale strength behavior and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(supplement2): 3920–3925.

    [66] 卢运虎,陈勉,金衍,等. 钻井液浸泡下深部泥岩强度特征试验研究[J]. 岩石力学与工程学报,2012,31(7):1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    LU Yunhu, CHEN Mian, JIN Yan, et al. Experimental study of strength properties of deep mudstone under drilling fluid soaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1399–1405. doi: 10.3969/j.issn.1000-6915.2012.07.012

    [67] 曹园,邓金根,蔚宝华,等. 深部泥页岩水化特性研究[J]. 科学技术与工程,2014,14(6):118–120.

    CAO Yuan, DENG Jingen, WEI Baohua, et al. Hydration properties research of deep formation shale[J]. Science Technology and Engineering, 2014, 14(6): 118–120.

    [68] 向朝纲,陈俊斌,杨刚. 钻井液浸泡作用下脆性页岩强度特征实验[J]. 断块油气田,2018,25(6):803–806.

    XIANG Chaogang, CHEN Junbin, YANG Gang. Experiment of brittle shale strength characteristics under drilling fluids soaking[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 803–806.

    [69]

    LYU Qiao, LONG Xinping, RANJITH P, et al. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids[J]. Engineering Geology, 2018, 233: 124–138. doi: 10.1016/j.enggeo.2017.12.002

    [70]

    ZHANG Qiangui, FAN Xiangyu, CHEN Ping, et al. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration[J]. Engineering Geology, 2020, 269: 105547. doi: 10.1016/j.enggeo.2020.105547

    [71]

    LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Rock mechanics and wellbore stability of deep shale during drilling and completion processes[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108882. doi: 10.1016/j.petrol.2021.108882

    [72]

    YEW C H, CHENEVERT M E, WANG C L, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311–316. doi: 10.2118/19536-PA

    [73] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液,1995,12(3):15–21.

    HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15–21.

    [74]

    MODY F K, HALE A H. Borehole-stability model to couple the mechanics and chemistry of drilling-fluid/shale interactions[J]. Journal of Petroleum Technology, 1993, 45(11): 1093–1101. doi: 10.2118/25728-PA

    [75]

    YU Mengjiao, CHENEVERT M E, SHARMA M M. Chemical-mechanical wellbore instability model for shales: accounting for solute diffusion[J]. Journal of Petroleum Science and Engineering, 2003, 38(3/4): 131–143.

    [76] 金衍,陈勉. 水敏性泥页岩地层临界坍塌时间的确定方法[J]. 石油钻探技术,2004,32(2):12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    JIN Yan, CHEN Mian. A method for determining the critical time of wellbore instability at water-sensitive shale formations[J]. Petroleum Drilling Techniques, 2004, 32(2): 12–14. doi: 10.3969/j.issn.1001-0890.2004.02.004

    [77]

    NGUYEN V X, ABOUSLEIMAN Y N. The porochemothermoelastic coupled solutions of stress and pressure with applications to wellbore stability in chemically active shale[R]. SPE 124422, 2009.

    [78] 温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发,2014,41(6):748–754. doi: 10.11698/PED.2014.06.16

    WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16

    [79]

    MA Tianshou, CHEN Ping. A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 72–98. doi: 10.1016/j.jngse.2015.05.028

    [80]

    CHENG Wan, JIANG Guosheng, LI Xiaodong, et al. A porochemothermoelastic coupling model for continental shale wellbore stability and a case analysis[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106265. doi: 10.1016/j.petrol.2019.106265

    [81]

    ZHANG Shifeng, WANG Haige, QIU Zhengsong, et al. Calculation of safe drilling mud density window for shale formation by considering chemo-poro-mechanical coupling effect[J]. Petroleum Exploration and Development, 2019, 46(6): 1271–1280. doi: 10.1016/S1876-3804(19)60280-6

  • 期刊类型引用(12)

    1. 马天寿,张东洋,陈颖杰,杨赟,韩雄. 基于神经网络模型的水平井破裂压力预测方法. 中南大学学报(自然科学版). 2024(01): 330-345 . 百度学术
    2. 黄千玲,赵军龙,白倩,许鉴源. 基于Adaboost算法的沉积微相自动识别——以陇东气田Q区山西组为例. 地质通报. 2024(04): 658-666 . 百度学术
    3. 龚宇,刘迪仁. 基于门控循环单元网络的低阻油层测井流体识别方法. 科学技术与工程. 2024(12): 4932-4941 . 百度学术
    4. 苏恺明,徐耀辉,徐旺林,张月巧,白斌,李阳,严刚. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究. 地学前缘. 2024(03): 530-540 . 百度学术
    5. 龚安,张恒. 基于小波变换和CNN-Transformer模型的测井储层流体识别. 西安石油大学学报(自然科学版). 2024(04): 108-116 . 百度学术
    6. 高泽林,王佳琦,张启子. 智能化测井解释软件平台的架构研究. 石油钻探技术. 2024(04): 128-134 . 本站查看
    7. 姜宝胜,白玉湖,徐兵祥,马晓强,王苏冉,杜旭林. 基于集成学习的致密气藏产能预测新方法. 中国海上油气. 2024(05): 120-127 . 百度学术
    8. 周舟,李犇,耿宇迪,肖锐. 超深破碎型地层岩石力学参数的大数据预测模型. 石油钻探技术. 2024(05): 91-96 . 本站查看
    9. 朱博含,单玄龙,衣健,石云倩,郭剑南,刘鹏程,王舒扬,李昂. 基于机器学习的火山岩识别方法及应用. 特种油气藏. 2024(05): 41-49 . 百度学术
    10. 张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 . 百度学术
    11. 高亚军,唐力辉,王振鹏,谢晓庆,徐海涛. 基于循环神经网络和数据差分处理的油田产量预测方法. 中国海上油气. 2023(03): 126-136 . 百度学术
    12. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 . 百度学术

    其他类型引用(7)

图(4)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  143
  • PDF下载量:  157
  • 被引次数: 19
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-02-12
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回