深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究

耿宇迪, 蒋廷学, 刘志远, 罗志锋, 王汉青

耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
引用本文: 耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs [J]. Petroleum Drilling Techniques,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
Citation: GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs [J]. Petroleum Drilling Techniques,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045

深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究

基金项目: 国家科技重大专项“缝洞型油藏堵调及靶向酸压工艺技术”(编号:2016ZX05014-005-003)部分研究内容
详细信息
    作者简介:

    耿宇迪(1977—),男,江苏淮安人,2000年毕业于石油大学(华东)焊接工艺专业,2004年获石油大学(北京)油气井工程专业硕士学位,高级工程师,主要从事酸化压裂改造技术研究。E-mail:gengyd.xbsj@sinopec.com

    通讯作者:

    王汉青,wanghanqing90@126.com

  • 中图分类号: TE357.1+1

Mechanism of Hydraulic Fracture Propagation in Deep Fracture-Cavity Carbonate Reservoirs

  • 摘要:

    为了准确掌握深层缝洞型碳酸盐岩油藏压裂过程中水力裂缝的扩展规律,基于弹性力学、断裂力学和流–固耦合理论,建立了适用于缝洞型储层的水力裂缝扩展数学模型,采用数值模拟方法分析了水力裂缝扩展过程与缝洞体的相互作用规律,并对“沿缝找体”压裂技术的适用性进行了深入探讨。数值模拟结果表明:溶洞周围发育天然裂缝时,会影响缝洞体周围局部诱导应力场,使水力裂缝更容易沟通缝洞体;采用大排量注入低黏压裂液或中小排量注入高黏压裂液,仅能沟通与水力裂缝初始扩展方向夹角较小的溶洞,而对与水力裂缝初始扩展方向夹角较大的溶洞,则需考虑采用强制转向技术进行沟通。研究结果表明,基于井眼与缝洞体的配置关系,采用“沿缝找体”压裂技术可以实现直接沟通、定向沟通和沿缝沟通3种缝洞体沟通模式,显著扩大储量动用范围。

    Abstract:

    In order to understand the law of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs during the fracturing process, a mathematical model of hydraulic fracture propagation suitable for fracture-cavity reservoirs was established based on elastic mechanics, fracture mechanics, and fluid-solid coupling theory. On the basis of the model, a numerical simulation was carried out to analyze the interaction law between hydraulic fractures and fracture-cavity reservoirs during propagation, and the technical applicability of “cave connection by natural fractures” was discussed thoroughly. The numerical simulation results show that the locally induced stress field around the fracture-cavity reservoir will be affected when natural fractures develop around the cave, which makes it easier for hydraulic fractures to connect with the fracture-cavity reservoir. The injection of low-viscosity fracturing fluid at large displacement or high-viscosity fracturing fluid at medium and small displacement can only connect to caves that have a small angle with the initial hydraulic fracture propagation direction, while for caves with large angles, forced steering technology should be considered for connection. The results show that according to the distribution relationship between wellbore and fracture-cavity reservoirs, three fracture-cavity reservoir connection modes including direct connection, directional connection, and seam connection can be achieved by using the technique of “cave connection by natural fractures”, which significantly improves the production range of reserves.

  • 常用钻井液润滑剂一般分为固体和液体2类[1-3]。与液体润滑剂相比,惰性固体润滑剂影响固相控制,且难以降解,易伤害储层和污染环境。液体润滑剂按照其主要成分,可分为矿物油、聚α–烯烃、脂肪酸酯、磷酸酯和烷基糖苷等类别[4-13]。其中,矿物油类润滑剂耐温、耐盐性能较好,但生物降解性差、荧光级别高、毒性大;其他液体润滑剂虽然毒性低,但在高温下易水解、起泡及影响钻井液的流变性。目前,国内深层水平井在应用水基钻井液钻井时,通常加入5.0%~12.0%的原油,以降低摩阻和扭矩、减少卡钻等井下故障[14]。然而,原油不但会对录井的准确度造成影响,而且废弃混油钻井液后期处理困难、环境污染风险高。因此,研制满足环保要求且无荧光的耐温钻井液润滑剂具有重要意义。合成脂肪酸酯类环保型液体润滑剂因兼具优异的润滑性、环保性、热氧化稳定性、水解稳定性和较好的低温流动性,并能通过分子结构优化进一步改善其性能,因此日益受到重视[15-19]。尽管合成酯类润滑剂具有优异的综合性能,但其成本高,耐温性能也不够好,限制了其推广应用[20]。为此,笔者以工业废弃植物油中的脂肪酸为主要原料,研制了耐温且环保的合成脂肪酸酯类钻井液环保润滑剂SMLUB-E[21],在降低成本的同时,可克服现有润滑剂耐温性与环保性无法兼顾的不足,在缓解环保压力的同时,解决复杂结构井钻井过程中井下摩阻大的技术难题。

    环保润滑剂应同时满足毒性低和润滑性良好的要求,因此,设计思路为:1)分子结构中不应含有多环芳烃类物质,以降低对环境的污染程度和荧光含量;2)应选用易于降解的天然脂肪酸类和醇类作为原料,以提高环保性和生物降解性;3)应具有双亲结构,其中亲水基团使润滑剂能够在金属表面牢固吸附并形成稳定的润滑膜,而疏水基团不仅会降低接触面间的摩擦阻力,而且会决定润滑膜的厚度和强度,使润滑膜在受到较大载荷时不易被破坏;4)应含有能与金属结合形成极压膜的极压元素,以提高极压润滑性能;5)为提高抗温能力和抗盐能力,优选合适相对分子质量的有机物为基础物,且其分子结构中的极性吸附基团不能与钙、镁离子反应,以免引起破乳,导致其润滑能力降低。

    以天然脂肪酸(工业废弃植物油中的脂肪酸)、有机多元醇等为基础原料,合成环保润滑剂SMLUB-E。具体合成步骤:1)合成出含不饱和化学键与活性反应基的聚合酯;2)对合成的聚合酯进行改性反应,引入极压元素与强吸附基团;3)在改性聚合酯上引入极性较大的基团。最终制得黄褐色透明液体润滑剂SMLUB-E,其分子结构如图1所示。

    图  1  SULUB-E的分子结构示意
    Figure  1.  Molecular structure of SULUB-E

    参照中国石化企业标准《水基钻井液用润滑剂技术要求》(Q/SHCG 4—2011)中的技术指标与试验方法,评价了润滑剂SMLUB-E的润滑性。

    1)润滑性试验。采用FANN 21200型极压润滑仪,测试了5.0%膨润土浆中加入1.0%SMLUB-E后的摩阻系数,并与加入原油后的摩阻系数进行了对比(试验条件为160 ℃温度下老化16 h),结果如图2所示。

    图  2  膨润土浆中分别加入SMLUB-E与原油后的摩阻系数
    Figure  2.  Friction coefficient of bentonite mud after adding SMLUB-E and crude oil respectively

    图2可以看出:在160 ℃下老化16 h后,膨润土浆的摩阻系数高达0.47;加入1.0% SMLUB-E后,摩阻系数显著降低(降至0.05),表现出较好的润滑性能;膨润土浆中加入8.0%原油后,摩阻系数同样降至0.05,说明加入原油也能够起到良好的润滑作用。但由于原油无法在水中分散,钻井液中混入原油时通常需要同时加入0.2%~0.5%的水包油型乳化剂(如OP-10)对原油进行乳化,提高其在钻井液中的分散性,否则很容易被固相控制设备筛除,增大消耗量。然而,原油与0.5%乳化剂OP-10形成乳化原油后,其润滑效果显著降低,膨润土浆中加入8.0%乳化原油,其摩阻系数仅为0.19。其原因是:一方面,原油乳化后大部分原油油滴被乳化剂分子包裹,丧失了疏水性;另一方面,由于乳化剂分子亲水端的极性高于原油,因此优先在金属表面吸附,导致原油油滴在金属表面的吸附量降低。

    2)极压膜强度试验。SMLUB-E除了通过极性基团的物理吸附和化学吸附在金属表面形成一层润滑膜外,在受到较大压力的摩擦时,极压元素还可与金属作用形成极压膜。因此,当钻具表面受到高温和高载荷作用时,润滑膜不易被破坏。用FANN 21200型极压润滑仪对SMLUB-E形成的极压膜强度进行了评价,并与8.0%乳化原油(成分同上)进行了对比,结果见表1

    表  1  SMLUB-E形成的极压膜强度
    Table  1.  Strength of extreme pressure film formed by SMLUB-E
    负载扭矩/
    (N·m)
    极压润滑仪表盘读数
    5.0%膨润土浆+
    8.0%乳化原油
    5.0%膨润土浆+
    1.0% SMLUB-E
    5.622 6
    11.33810
    16.95414
    22.66218
    28.2咬合21
    33.524
    39.526
    45.230
    50.8咬合
    下载: 导出CSV 
    | 显示表格

    表1可以看出,当FANN 21200型极压润滑仪的负载扭矩达到28.2 N·m时,加入8.0%乳化原油膨润土浆中的滑块和滑环之间即会咬合;而加入1.0% SMLUB-E膨润土浆中的滑块与滑环的负载扭矩达到50.8 N·m时才会咬合,说明SMLUB-E形成的极压膜具有较高的强度,在受到较高负载时也不易被破坏。

    聚磺钻井液中加入2.0%的SMLUB-E,在160 ℃下老化16 h后,分别采用FANN 21200型极压润滑仪和NZ-3型滤饼黏滞系数测定仪,测试其摩阻系数与滤饼黏滞系数,考察聚磺钻井液加入SMLUB-E后的润滑性,并与其加入原油和乳化原油后的润滑性进行了对比,结果如图3所示。聚磺钻井液的配方为3.0%膨润土+0.3%PAC-LV+0.2%PFL-H+3.0%SPNH+2.0%SMC+0.2% NaOH+加重剂BaSO4,密度为1.30 kg/L,pH值为9.5,下同;乳化原油成分同上。

    图  3  SMLUB-E与原油在聚磺钻井液中的润滑效果对比
    Figure  3.  Comparison of lubricating effect between SMLUB-E and crude oil in polysulfide drilling fluid

    图3可以看出,聚磺钻井液的摩阻系数为0.31,加入2.0% SMLUB-E和8.0%原油后,其摩阻系数分别降至0.08和0.19,说明SMLUB-E在聚磺钻井液中的润滑效果要优于原油;而加入8.0%乳化原油后,摩阻系数仅降至0.24,其降低幅度低于原油。这一方面是因为极性相对较强的磺化处理剂(SPNH和SMC)在金属表面优先吸附,从而阻碍了原油的吸附;另一方面可能是由于磺化处理剂能够在一定程度上乳化原油。此外,由图3还可以看出,无论是SMLUB-E还是原油均能够显著降低滤饼黏滞系数。

    在5.0%膨润土浆中加入1.0% SMLUB-E,在不同温度下老化16 h后,测定其摩阻系数,以考察SMLUB-E的耐温性,结果如图4所示。

    图  4  加入SMLUB-E的膨润土浆在不同温度下老化后的摩阻系数
    Figure  4.  Post-aging friction coefficient of bentonite mud with SMLUB-E at different temperatures

    图4可以看出,随着老化温度从100 ℃升高至160 ℃,膨润土浆摩阻系数变化幅度不大,始终保持在0.04~0.05,说明SMLUB-E在高温下具有较好的润滑性,耐温可达160 ℃。

    通过改变SMLUB-E的加量,评价了SMLUB-E对膨润土浆和聚磺钻井液流变性和滤失性的影响程度,结果见表2。试验条件为160 ℃下老化16 h。

    表  2  SMLUB-E对膨润土浆和聚磺钻井液流变性和滤失性的影响
    Table  2.  Influence of SMLUB-E on rheological and filtration properties of bentonite mud and polysulfide drilling fluid
    试验浆体表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    API滤失量/mL
    5.0%膨润土浆(A) 8.5 4.0 4.525.0
    A+1.0% SMLUB-E 8.5 4.0 4.520.0
    A+1.5% SMLUB-E 9.0 5.0 4.017.0
    A+2.0% SMLUB-E 8.5 4.0 4.517.0
    聚磺钻井液(B)43.532.011.5 5.2
    B+1.0% SMLUB-E52.540.012.5 4.2
    B+1.5% SMLUB-E50.038.012.0 4.0
    B+2.0% SMLUB-E52.540.012.5 4.0
    下载: 导出CSV 
    | 显示表格

    表2可以看出,无论是膨润土浆还是聚磺钻井液,随着SMLUB-E加量增大,其黏度和切力变化不大,滤失量略有降低。这说明SMLUB-E不会对钻井液的流变性造成不利影响,而且能提高其滤失造壁性。

    参照国标《生活饮用水标准检验方法》(GB/T 5750—2006)、《水质:苯并(α)芘的测定:乙酰化滤纸层析荧光分光光度法》(GB/T 11895—1989)和《海洋石油勘探开发污染物生物毒性》(GB18420.1—2009)等,测定了环保润滑剂SMLUB-E的重金属含量、生物毒性等环保性能。测试结果为:

    1)SMLUB-E中苯并芘含量小于1.0 mg/L,重金属汞、镉、总铬、砷和铅的含量均小于0.001 mg/L,都远小于标准限值,可近似认为SMLUB-E中不含重金属。

    2)SMLUB-E的96 h半数致死浓度(LC50)高达58 300 mg/L,超过海上油田废弃钻井液的一级排放标准(LC50=30 000 mg/L),属于无毒油田化学剂(LC50>20 000 g/mL)。

    环保性能测试结果表明,SMLUB-E具有很好的环保性能,不会对生态环境造成大的影响。

    环保润滑剂SMLUB-E目前已在塔河油田TP154XCH井、TP238CH井和中良1CX井等深井进行了现场应用,定向钻进过程中未出现托压、卡钻等井下故障,起下钻顺畅。下面以TP238CH井为例,介绍SMLUB-E的具体应用情况。

    TP238CH井为两级井身结构侧钻水平井,套管内开窗侧钻,侧钻点选择在奥陶系桑塔木组地层,完钻层位为奥陶系一间房组。侧钻点井深6 236.00 m,设计完钻井深6 698.81 m,实际钻至井深6 537.48 m(垂深6 435.56 m)时因发生失返性漏失提前完钻,完钻井斜角88.5°,水平位移137.19 m。该井造斜段狗腿度较大,最大井眼曲率达到21.0°/30m,钻具受到较高的弯曲载荷,同时小井眼(ϕ120.7 mm井眼)非常容易形成岩屑床,均会导致产生较大的井下摩阻,要求钻井液具有良好的润滑降摩性能。

    以往塔河油田的定向井、水平井普遍采用聚磺混油钻井液钻进。为了缓解日益增大的环保压力,TP238CH井采用了以SMLUB-E为核心处理剂的不混油低摩阻钻井液SMO-FREE,基本配方为3.0%~4.0%膨润土+0.1%~0.2%提切降滤失剂SMVIS-1+0.2%~0.3%增黏降滤失剂SMVIS-2+2.0%~3.0% SMP-2+2.0%~3.0% SMC+1.0%~2.0%镶嵌成膜防塌剂SMNA-1+1.0%~2.0%SMLUB-E+加重剂BaSO4,密度为1.19~1.30 kg/L,pH值为9~10。

    TP238CH井钻进中的钻井液摩阻系数和滤饼黏滞系数随SMLUB-E加量的变化见表3

    表  3  钻井过程中钻井液润滑性的变化
    Table  3.  Lubricity changes of drilling fluid during drilling operation
    开次井深/mSMLUB-E加量,%摩阻系数滤饼黏滞系数
    一开6 239.000 0.330.140 5
    6 250.000 0.320.140 5
    6 263.000.250.300.052 4
    6 273.000.800.270.052 4
    6 304.001.300.220.052 4
    6 335.001.800.180.043 7
    6 396.002.000.140.043 7
    6 461.002.000.140.043 7
    二开6 467.002.000.130.043 7
    6 497.002.200.120.043 7
    6 531.002.200.120.043 7
    下载: 导出CSV 
    | 显示表格

    表3可以看出,TP238CH 井钻进中的钻井液未加入SMLUB-E时的润滑性较差,摩阻系数高达0.33,滤饼黏滞系数高达0.140 5;当加入0.25% SMLUB-E后,滤饼黏滞系数大幅降低(降至0.052 4),但摩阻系数的降低幅度很小,仅从0.33降至0.30,这说明加入0.25%SMLUB-E并不能有效改善钻井液的润滑性。随井斜角增大,SMLUB-E的加量从0.25%逐渐提高至2.20%,滤饼黏滞系数趋于稳定,始终保持在0.043 7~0.052 4,而摩阻系数从0.30逐步降至0.12,说明SMLUB-E能够增强钻井液的润滑性能。

    TP238CH井钻井过程中,摩阻随井深和井斜角的变化情况如图5所示。

    图  5  摩阻随井深与井斜角的变化
    Figure  5.  Frictional resistance changes with the depth and deviation of the well

    图5可以看出,一开从井深6 236.00 m钻至井深6 264.00 m的过程中,井斜角从1.9°增大到9.6°,此阶段由于钻井液中未加入润滑剂SMLUB-E,摩阻从初始的400 kN逐渐增大到800 kN;加入0.80%SMLUB-E后,从井深6 264.00 m钻至井深6 287.00 m的过程中,摩阻降至600 kN左右,钻至井深6 304.00 m时,随着井斜角进一步增大至22°,摩阻又开始呈现增大趋势,增大至800 kN,说明此时0.8%的SMLUB-E已不足以控制摩阻;将SMLUB-E加量提至1.8%以后,摩阻随即降至400 kN;从井深6 395.00 m钻至井深6 461.00 m的过程中,再少量补充SMLUB-E并将其加量控制在2.0%,随着井斜角从33.5°逐渐增大到60.0°,摩阻也较好地控制在500~600 kN。二开从井深6 461.00 m开始钻进,由于已用套管封隔了上部井段的井壁,开始阶段的摩阻相比一开完钻时甚至略有降低。继续少量补充SMLUB-E并控制其加量在2.2%左右,直至钻至完钻井深摩阻都较好地控制在400~600 kN。

    通过分析TP238CH井钻井过程中的摩阻变化情况可知,当钻井液中环保润滑剂SMLUB-E的加量保持在2.0%左右时,能够将摩阻控制在较低值,相比采用传统混油钻井液的水平井摩阻(80~100 kN)降低约30%以上,证明SMLUB-E具有优异的润滑性能。

    1)选用工业废植物油中的脂肪酸、有机多元醇等作为基础原料,合成了钻井液环保润滑剂SMLUB-E。

    2)室内试验分析表明,SMLUB-E在水基钻井液中具有良好的润滑效果,润滑膜强度高,耐温160 ℃,不含重金属,无毒,环保性能好。

    3)以SMLUB-E为核心处理剂的不混油低摩阻钻井液SMO-FREE,在塔河油田深层水平井定向钻进时进行了应用,未出现托压、卡钻等井下故障。现场应用表明,当钻井液中SMLUB-E加量保持在2.0%左右时,井下摩阻能够控制在400~600 kN,表现出良好的润滑降摩阻性能。

  • 图  1   水力压裂裂缝扩展计算流程

    Figure  1.   Hydraulic fracture propagation calculation workflow

    图  2   数值模拟结果与物理模拟试验结果的对比

    Figure  2.   Comparison between numerical simulation results and physical simulation results

    图  3   溶洞直径和溶洞与水力裂缝初始扩展方向夹角对水力裂缝扩展的影响

    Figure  3.   Influence of cave’s diameter and its angle with initial hydraulic fracture propagation direction on hydraulic fracture propagation

    图  4   溶洞与水力裂缝初始扩展方向夹角和天然裂缝面密度对水力裂缝扩展的影响

    Figure  4.   Influence of cave’s angle with initial hydraulic fracture propagation direction and natural fracture surface density on hydraulic fracture propagation

    图  5   单一溶洞沟通工程图版

    Figure  5.   Engineering chart of single cave connection

    图  6   水力裂缝在复杂缝洞体中的扩展模式

    Figure  6.   Propagation mode of hydraulic fractures in complex fracture-cavity reservoirs

    图  7   过TK1井地震能量属性剖面

    Figure  7.   Seismic energy attribute section through Well TK1

    图  8   TH1CH井酸压施工曲线

    Figure  8.   Acid fracturing construction curve of Well TH1CH

    表  1   “沿缝找体”储层改造策略

    Table  1   Reservoir stimulation strategy of "cave connection by natural fractures"

    夹角/(°)沟通半径/m沟通工艺缝内净压力/MPa
    0~3030~60常规/前置液酸压<5
    60~120多级交替注入酸压/复合酸压
    30~6030~60暂堵转向+缝网酸压5~8
    60~120暂堵转向+交替注入酸压
    60~9030~60定向喷射+转向酸压9~11
    60~120定向喷射+多级交替注入酸压
    注:夹角为水力裂缝初始延伸方向与缝洞体的夹角。
    下载: 导出CSV
  • [1] 张宁宁,何登发,孙衍鹏,等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探,2014,19(6):54–65. doi: 10.3969/j.issn.1672-7703.2014.06.007

    ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54–65. doi: 10.3969/j.issn.1672-7703.2014.06.007

    [2] 胡文革. 塔里木盆地塔河油田潜山区古岩溶缝洞类型及其改造作用[J]. 石油与天然气地质,2022,43(1):43–53.

    HU Wenge. Paleokarst fracture-vug types and their reconstruction in buried hill area, Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 43–53.

    [3] 王小垚,曾联波,魏荷花,等. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展,2018,33(8):818–832. doi: 10.11867/j.issn.1001-8166.2018.08.0818

    WANG Xiaoyao, ZENG Lianbo, WEI Hehua, et al. Research progress of the fractured-vuggy reservoir zones in carbonate reser-voir[J]. Advances in Earth Science, 2018, 33(8): 818–832. doi: 10.11867/j.issn.1001-8166.2018.08.0818

    [4] 耿宇迪,周林波,王洋,等. 超深碳酸盐岩复合高导流酸压技术[J]. 油气藏评价与开发,2019,9(6):56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    GENG Yudi, ZHOU Linbo, WANG Yang, et al. High conductivity acid fracturing technology in ultra-deep carbonate reservoir[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(6): 56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    [5] 李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93. doi: 10.11911/syztjs.2020074

    LI Xingyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93. doi: 10.11911/syztjs.2020074

    [6] 陈志海,戴勇. 深层碳酸盐岩储层酸压工艺技术现状与展望[J]. 石油钻探技术,2005,33(1):58–62. doi: 10.3969/j.issn.1001-0890.2005.01.018

    CHEN Zhihai, DAI Yong. Actuality and outlook of acid-fracturing technique in deep carbonate formation[J]. Petroleum Drilling Techniques, 2005, 33(1): 58–62. doi: 10.3969/j.issn.1001-0890.2005.01.018

    [7] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    [8] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058

    [9] 牟建业,张宇,牟善波,等. 缝洞型碳酸盐岩储层酸液流动反应建模[J]. 石油科学通报,2021,6(3):465–473. doi: 10.3969/j.issn.2096-1693.2021.03.037

    MOU Jianye, ZHANG Yu, MOU Shanbo, et al. Modeling of acid-rock interaction in naturally fractured vuggy carbonate reservoirs[J]. Petroleum Science Bulletin, 2021, 6(3): 465–473. doi: 10.3969/j.issn.2096-1693.2021.03.037

    [10] 王燚钊,侯冰,张鲲鹏,等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报,2020,5(3):412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    WANG Yizhao, HOU Bing, ZHANG Kunpeng, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    [11]

    MEHRJOO H, NOROUZI-APOURVARI S, JALALIFAR H, et al. Experimental study and modeling of final fracture conductivity during acid fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109192. doi: 10.1016/j.petrol.2021.109192

    [12]

    DAI Y, HOU B, ZHOU C, et al. Interaction law between natural fractures-vugs and acid-etched fracture during steering acid fracturing in carbonate reservoirs[J]. Geofluids, 2021, 2021: 6649874.

    [13]

    CHENG L, LUO Z, YU Y, et al. Study on the interaction mechanism between hydraulic fracture and natural karst cave with the extended finite element method[J]. Engineering Fracture Mechanics, 2019, 222: 106680. doi: 10.1016/j.engfracmech.2019.106680

    [14]

    ZHAO H, XIE Y, ZHAO L, et al. Simulation of mechanism of hydraulic fracture propagation in fracture-cavity reservoirs[J]. Chemistry and Technology of Fuels and Oils, 2020, 55(6): 814–827. doi: 10.1007/s10553-020-01096-9

    [15] 赵海洋,刘志远,唐旭海,等. 缝洞型碳酸盐岩储层循缝找洞压裂技术[J]. 石油钻采工艺,2021,43(1):89–96. doi: 10.13639/j.odpt.2021.01.014

    ZHAO Haiyang, LIU Zhiyuan, TANG Xuhai, et al. Fracturing technology of searching for vugs along fractures in fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(1): 89–96. doi: 10.13639/j.odpt.2021.01.014

    [16]

    LIU Z, TANG X, TAO S, et al. Mechanism of connecting natural caves and wells through hydraulic fracturing in fracture-cavity reservoirs[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5511–5530. doi: 10.1007/s00603-020-02225-w

    [17]

    HOU B, DAI Y, ZHOU C, et al. Mechanism study on steering acid fracture initiation and propagation under different engineering geological conditions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(3): 1–14.

    [18]

    KOLAWOLE O, ISPAS I. Interaction between hydraulic fractures and natural fractures: current status and prospective directions[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(4): 1613–1634. doi: 10.1007/s13202-019-00778-3

    [19]

    LA B V, BEZERRA F H R, SOUZA V H P, et al. High-permeability zones in folded and faulted silicified carbonate rocks–implications for karstified carbonate reservoirs[J]. Marine and Petroleum Geology, 2021, 128: 105046. doi: 10.1016/j.marpetgeo.2021.105046

  • 期刊类型引用(19)

    1. 苏乐. 植物油类润滑剂改性方法研究进展. 化学工程师. 2024(05): 85-88+116 . 百度学术
    2. 金军斌,董晓强,王伟吉,张杜杰. 塔里木盆地深部寒武系复杂地层钻井液技术. 石油钻探技术. 2024(02): 165-173 . 本站查看
    3. 宋兆辉. 高性能水基钻井液处理剂研究进展及发展趋势. 化学通报. 2024(07): 831-837 . 百度学术
    4. 高书阳. 苏北陆相页岩油高性能水基钻井液技术. 石油钻探技术. 2024(04): 51-56 . 本站查看
    5. 王凯,张建卿,李晓明,王伟良,王清臣,韩成福,朱明明. 水基钻井液润滑剂研究进展与展望. 油田化学. 2023(01): 149-158 . 百度学术
    6. 刘胜,吴宇,由福昌. 钻井液润滑性能评价方法研究进展. 实验技术与管理. 2023(06): 18-29 . 百度学术
    7. 金军斌,高书阳,陈晓飞. 帅页3-7HF页岩油小井眼水平井水基钻井液技术. 钻井液与完井液. 2023(03): 349-355 . 百度学术
    8. 宁新军,姬文钰,潘谦宏,都伟超,刘雄雄. 水基钻井液用环保型润滑剂的研究综述. 化工技术与开发. 2023(08): 28-32 . 百度学术
    9. 侯彬彬,董丽娜,高利军,平园园,段涛涛. 环保型钻井液液体润滑剂研究进展. 化学工程师. 2023(08): 88-92 . 百度学术
    10. 王中华. 2017~2021年国内钻井液处理剂研究进展. 中外能源. 2022(03): 31-42 . 百度学术
    11. 田逢军,王运功,陈琪,陶海君,王忠斌. 环保型无荧光水基钻井液润滑剂的研究与应用. 化学工程师. 2022(07): 55-58+50 . 百度学术
    12. 薛森,狄明利,夏小春,曾祥聪,汪国辉. 钻井液用极压润滑剂PF-EXLUBE的开发及应用. 海洋石油. 2022(02): 103-108 . 百度学术
    13. 周启成,梁应红,单海霞,黄桃,国安平,王俊祥. 抗高温高密度生物质钻井液体系研究及应用. 石油钻探技术. 2022(06): 78-84 . 本站查看
    14. 王宗轮,孙金声,刘敬平,吕开河,邵子桦,张宪法. 耐高温高盐钻井液润滑剂的研制与性能评价. 钻井液与完井液. 2022(05): 538-544 . 百度学术
    15. 吴雄军,林永学,金军斌,李大奇,刘珂. 川西低渗气藏井壁修补强化钻井液技术. 断块油气田. 2021(02): 269-273 . 百度学术
    16. 魏佳怡,李月红,于文婧,高艳,吴雪,刘雄雄,张洁. 环保型水基钻井液润滑剂的研究进展. 化工技术与开发. 2021(06): 36-40 . 百度学术
    17. 袁俊洲,乔良. 机械设备用节能环保润滑油的制备及性能评价. 化学与粘合. 2021(05): 392-395 . 百度学术
    18. 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用. 断块油气田. 2021(06): 761-764 . 百度学术
    19. 李公让,王承俊. 极性吸附钻井液润滑剂的研究进展与发展趋势. 钻井液与完井液. 2020(05): 541-549 . 百度学术

    其他类型引用(5)

图(8)  /  表(1)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  143
  • PDF下载量:  81
  • 被引次数: 24
出版历程
  • 收稿日期:  2022-05-14
  • 修回日期:  2023-03-19
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2023-03-24

目录

/

返回文章
返回