武隆区块常压页岩气藏低成本压裂技术

周博成, 熊炜, 赖建林, 房启龙

周博成, 熊炜, 赖建林, 房启龙. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011
引用本文: 周博成, 熊炜, 赖建林, 房启龙. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011
ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011
Citation: ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011

武隆区块常压页岩气藏低成本压裂技术

基金项目: 中国石化科技攻关项目“常压页岩气钻完井及配套工艺技术研究” (编号:P21087-5)资助
详细信息
    作者简介:

    周博成(1994—),男,江苏宜兴人,2016年毕业于中国石油大学(北京)石油工程专业,2019年获中国石油大学(北京)油气井工程专业硕士学位,助理工程师,主要从事非常规油气储层改造及岩石力学相关研究。E-mail:zhoubch@outlook.com

  • 中图分类号: TE357.1

Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block

  • 摘要:

    武隆区块常压页岩储层能量低,产量较低,实现效益开发难度大,为此,开展了低成本压裂开发技术研究。在分析武隆区块压裂改造技术难点的基础上,进行了诱导应力计算、压裂裂缝模拟和压裂费用对比,优化了压裂段长、簇数和压裂施工参数,优选了压裂材料和压裂设备,形成了“短段长+单簇滑套+低黏滑溜水+低成本石英砂+高砂比连续加砂”的压裂施工工艺,并在武隆区块A 井进行现场试验。通过应用无限级滑套完井工艺和实时调整现场压裂参数,A 井压后产量与同平台“中等段长+密切割+全陶粒支撑剂”压裂井产量相当,压裂成本降低52.8%,并实现了单井单日8 段压裂施工。低成本压裂技术为武隆区块常压页岩气的效益开发提供了新的技术途径。

    Abstract:

    Normal-pressure shale reservoirs in Wulong Block have low energy and production, and suffer from difficulties in beneficial development. For this reason, a low-cost fracturing technology was studied for its development. Considering difficulties of fracturing stimulation in Wulong Block, induced stress calculation, fracture simulation, and fracturing cost comparisons were carried out. This allowed the fracturing stage length, number of clusters, and operation parameters to be optimized. Further, the fracturing materials and equipment were chosen. A new fracturing technology was thereby developed, involving a short fracturing stage length, a single-cluster sleeve, low-viscosity slick water, low-cost quartz sand, continuous sand addition at a high proppant concentration, which was then applied in the field test on Well A in Wulong Block. Through the application of the unlimited sliding sleeve completion and the real-time adjustment of on-site fracturing parameters, the production of Well A after fracturing was comparable to that of the fracturing well on the same platform with fracturing parameters of a medium fracturing stage length, tight cluster spacing, and ceramic proppants. In this study, the fracturing cost was reduced by 52.8%, and the fracturing performance sped up to 8 stages per day. The low-cost fracturing technology has provided technical reference for the beneficial development of normal-pressure shale gas in Wulong Block.

  • 图  1   不同缝间距诱导应力分布

    Figure  1.   Induced stress distribution with different fracture spacing

    图  2   不同压裂段长下的无因次压裂成本(以段长75 m为基准)

    Figure  2.   Dimensionless fracturing cost for different fracturingstage lengths (based on a 75 m fracturing stage length)

    图  3   不同压裂方案的裂缝参数模拟结果

    Figure  3.   Fracture parameters simulated under different fracturing schemes

    图  4   不同支撑剂组合的无因次费用对比(以全陶粒为基准)

    Figure  4.   Dimensionless cost comparison for different proppant combinations (based on ceramic)

    图  5   A 井典型压裂曲线

    Figure  5.   Typical fracturing curve of Well A

    图  6   累计产气量和返排率关系曲线

    Figure  6.   Relationship between cumulative gas production and flowback rate

    图  7   A井和B井不同生产时间下的气液比

    Figure  7.   Comparison of gas-to-liquid ratio at different time between Well A and Well B

    表  1   武隆区块开发井生产数据

    Table  1   Production data of development wells in Wulong Block

    井号平均段长/m归一化无阻流量/104m3日均产气量/104m3
    X17815.71.70
    X2969.21.68
    X3747.30.82
    下载: 导出CSV
  • [1] 聂海宽,汪虎,何治亮,等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,2019,40(2):131–143. doi: 10.7623/syxb201902001

    NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2): 131–143. doi: 10.7623/syxb201902001

    [2] 彭勇民,龙胜祥,何希鹏,等. 彭水地区常压页岩气储层特征及有利区评价[J]. 油气藏评价与开发,2020,10(5):12–19.

    PENG Yongmin, LONG Shengxiang, HE Xipeng, et al. Characteristics of normal-pressure shale gas reservoirs and evaluation of its favorable areas in Pengshui[J]. Reservoir Evaluation and Development, 2020, 10(5): 12–19.

    [3] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发,2019,9(5):1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001

    FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in Southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001

    [4] 蒋廷学,苏瑗,卞晓冰,等. 常压页岩气水平井低成本高密度缝网压裂技术研究[J]. 油气藏评价与开发,2019,9(5):78–83. doi: 10.3969/j.issn.2095-1426.2019.05.010

    JIANG Tingxue, SU Yuan, BIAN Xiaobing, et al. Network fracturing technology with low cost and high density for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2019, 9(5): 78–83. doi: 10.3969/j.issn.2095-1426.2019.05.010

    [5] 刘建坤,蒋廷学,卞晓冰,等. 常压页岩气低成本高效压裂技术对策[J]. 钻井液与完井液,2020,37(3):377–383. doi: 10.3969/j.issn.1001-5620.2020.03.019

    LIU Jiankun, JIANG Tingxue, BIAN Xiaobing, et al. The countermeasure of low cost and high efficiency fracturing technology of normal pressure shale gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 377–383. doi: 10.3969/j.issn.1001-5620.2020.03.019

    [6] 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065

    XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065

    [7] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001

    [8] 杨怀成,夏苏疆,高启国,等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发,2021,11(3):348–355.

    YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2021, 11(3): 348–355.

    [9] 李庆辉,陈勉,金衍,等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报,2012,31(8):1680–1685.

    LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1680–1685.

    [10]

    GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128: 373–380. doi: 10.1016/j.fuel.2014.03.029

    [11]

    TAN Peng, JIN Yan, HAN Ke, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482–493. doi: 10.1016/j.fuel.2017.05.033

    [12]

    FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale[R]. SPE 77441, 2002.

    [13]

    GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treat-ments[J]. AAPG Bulletin, 2007, 91(4): 603–622. doi: 10.1306/11010606061

    [14]

    CHENG Y. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(1): 31–40.

    [15] 潘林华,张士诚,程礼军,等. 水平井 “多段分簇” 压裂簇间干扰的数值模拟[J]. 天然气工业,2014,34(1):74–79. doi: 10.3787/j.issn.1000-0976.2014.01.011

    PAN Linhua, ZHANG Shicheng, CHENG Lijun, et al. A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J]. Natural Gas Industry, 2014, 34(1): 74–79. doi: 10.3787/j.issn.1000-0976.2014.01.011

    [16] 李勇明,陈曦宇,赵金洲,等. 水平井分段多簇压裂缝间干扰研究[J]. 西南石油大学学报(自然科学版),2016,38(1):76–83.

    LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(1): 76–83.

    [17]

    FERGUSON K, THOMAS C, WELLHOEFER B, et al. Cementing sleeve fracture completion in eagle ford shale will forever change the delivery of hydraulic fracturing[R]. SPE 158490, 2012.

    [18]

    STEGENT N A, FERGUSON K, SPENCER J. Comparison of fracture valves vs. plug-and-perforation completion in the oil segment of the eagle ford shale: a case study[J]. SPE Production & Operations, 2013, 28(2): 201–209.

    [19]

    CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[J]. SPE Production & Operations, 2010, 25(4): 438–452.

    [20] 吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发,2012,39(3):352–358.

    WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.

    [21]

    FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001, 6(3): 288–298. doi: 10.2118/74138-PA

    [22] 夏海帮,包凯,王睿. 页岩气井用新型无限级全通径滑套压裂技术先导试验[J]. 油气藏评价与开发,2021,11(3):390–394.

    XIA Haibang, BAO Kai, WANG Rui. Pilot test of new infinite stage and full-bore sliding sleeve fracturing technology in shale gas wells[J]. Reservoir Evaluation and Development, 2021, 11(3): 390–394.

图(7)  /  表(1)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  152
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 修回日期:  2022-04-05
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回