Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"
-
摘要: 目前在页岩油藏的多段压裂水平井压–闷–采过程中,缺乏系统完善的水平井压裂参数优化方法,为此,基于动态反演理论,建立了压裂参数优化方法。首先,根据页岩油藏压裂后形成的复杂缝网,采用数值理论和离散裂缝方法,建立了考虑页岩油储层特征和复杂天然裂缝的多段压裂水平井数值模型(EDFM-NM),得到了含离散天然裂缝的油藏压力解及多段压裂水平井的井底压力数值解;然后,应用动态分析方法,建立了包括段间距、闷井时间和井距的优化方法。应用建立的优化方法对长庆页岩油XC井进行实例分析,结果表明,实例井合理段间距为100~125 m,合理闷井时间为25~35 d,合理井距为590~610 m。研究结果为长庆油田页岩油藏压–闷–采参数优化提供了理论基础。Abstract: Regarding the absence of a systemic and complete method for optimizing the multi-stage fracturing parameters of horizontal wells in shale reservoirs during well fracturing-soaking-producing, a fracturing parameter optimization method was developed based on the dynamic inversion theory. First, a numerical model (EDFM-NM) for horizontal wells was established depending on the complex induced fracture networks formed in hydraulic fracturing of shale oil reservoirs, which takes into consideration the characteristics of the reservoirs as well as complex natural fractures. With the model, solution for the pressure of reservoirs with discrete natural fractures and numerical solution of bottom hole pressure of horizontal wells after multi-stage fracturing were obtained. Second, approaches for optimization of stage spacing, soaking time, and well spacing were proposed utilizing the dynamic analysis. Finally, the optimization method was applied to shale oil Well XC in Changqing Oilfield. Reasonable stage spacing, soaking time, and well spacing were found to be 100−125 m, 25−35 d, and 590−610 m, respectively. The research results can provide a theoretical basis for the optimization of fracturing parameters during “well fracturing–soaking–producing” of shale reservoirs in Changqing Oilfield.
-
Keywords:
- shale oil /
- horizontal well /
- dynamic inversion /
- parameter optimization /
- stage spacing /
- soaking time /
- well spacing /
- Changqing Oilfield
-
地热是一种无污染、可再生的清洁能源,与传统化石能源相比,具有储量大、分布广和能源利用率高等优势,越来越受到重视[1-4]。但地热资源过度开采或养护不当会造成资源枯竭,为确保地热资源的可持续发展,同时避免环境污染,最有效的技术措施就是地热回灌技术[5-7]。回灌是把经过利用的地热水,通过地热回灌井重新注回热储层段的方法,回灌不仅可以解决地热废水问题,还可以改善或恢复地热储层的产热能力,保持地热储层的流体压力,维持地热田的持续开采和循环利用, 使地热能成为一种可持续的清洁能源[8-10]。回灌过程中,由水中悬浮物、气泡、化学沉淀等导致的回灌井堵塞是造成回灌量有限的主要原因,尤其是孔隙性砂岩热储回灌井堵塞问题一直没有解决,是地热可持续开发利用中公认的技术难题。地热水回灌系统中,回灌井的钻井完井工艺是回灌能否实现的重要技术环节,回灌井井深多为2 000~3 000 m[11]。
目前,东营地区回灌井钻井完井过程中存在一系列问题,如现有回灌井部分井段未固井、钻井液体系不合适等导致井壁不稳定和回灌率偏低,已经成为制约该地区地热产业规模扩大的瓶颈,严重阻碍了地热能的可持续开发利用[12-14]。因此,笔者在现有工艺基础上,将油田油气井的钻井和射孔完井工艺应用到地热回灌井中,形成了地热储层钻井完井技术,现场试验取得了较好的效果,提高了单井回灌量,同时全井段固井延长了地热井的使用寿命,具有较好的推广应用价值,保障了该地区地热能产业的快速发展。
1. 地热储层岩性特征及开发现状
东营地区在大地构造单元上隶属华北坳陷的次级构造单元济阳坳陷的东部,地层自下而上包括太古界泰山岩群,古生界寒武系、奥陶系、石炭系和二叠系,中生界侏罗系、白垩系,新生界新近—古近系、第四系。
该地区自中生代以来,受燕山期地壳运动的影响,区域断裂构造发育,形成了区域温度或热流值普遍升高的背景,区内地温梯度均大于3.0 ℃/100m,开发利用的主要热储层为古近系东营组热储和新近系馆陶组热储,温度一般为65~72 ℃,单井出水量70~120 m3/h。目前,东营地区的地热资源开发利用已初具规模,主要用于原油集输加热、洗浴、渔业养殖及居民清洁能源供暖等,热储层位主要是馆陶组和东营组,开采馆陶组热储的地热井主要在沾化凹陷内,取水段一般为1 500~1 950 m井段,地层岩性为灰白色砾状砂岩、细砂岩和灰绿色细砂岩与棕色泥岩互层,底部为含石英、黑色燧石的砾状砂岩、砂砾岩;开采东营组热储的地热井主要在东营凹陷内,取水段一般为1 400~1 900 m井段,地层岩性为灰绿、灰白色砂岩、细砂岩及泥岩互层,以砂岩为主,中部为棕红色泥岩、细砾岩为主,底部为灰绿、灰白色细砾岩、细砂岩及泥岩。
该地区现有回灌井通常采用二开井身结构,一开表层泵室段全部用水泥封固,二开完钻后采用悬挂器悬挂套管和筛管完井,筛管以上部分用膨胀橡胶止水器止水,环空未用水泥封固(见图1)。
现有筛管完井工艺存在以下问题:1)回灌过程中砂泥岩互层在大液量冲刷下,其中的细粉砂容易随着地热水进入地层中,堵塞孔喉,降低回灌量,且泥岩段垮塌后会堵塞回灌井段,进一步降低回灌能力;2)采用膨胀橡胶止水器封隔筛管上部井段,由于橡胶止水器工艺简单,材质易受腐蚀,缩短地热井后期使用寿命;3)钻井过程中钻井液不合适,固相含量过高,密度过大,易使钻井液通过孔隙渗入地层,并在井壁形成滤饼,堵塞渗流通道,导致地层孔隙度和渗透率降低。回灌层段一般选择渗透性比较好的含水层,而这正是钻井液影响最大的层位,钻井液造成水层渗透率降低,进而影响回灌效果。
2. 钻井完井关键技术
针对以上问题,从钻具组合、钻井液和完井方式等方面进行了关键技术研究,以最大程度地降低对热储储层渗透率的伤害,增大地热水的回灌量。
2.1 优选钻具组合
东营地区馆陶组、东营组砂泥岩互层明显,泥岩占较大比例,由于牙轮钻头破岩方式以研磨为主,吃入地层有限,导致钻头破岩效率低,严重制约机械钻速。另外,该地区地层存在一定倾角,大钻压钻进时易发生井斜,因此选用“PDC钻头+1.25°单弯螺杆+钻铤+钻杆”钻具组合。该钻具组合能够有效控制井眼轨迹,防斜打直,使井眼轨迹平滑[15-16]。同时,PDC钻头适应高转速、低钻压的工作环境,螺杆的转速可以保持在200~260 r/min,钻压控制在30~50 kN,PDC钻头在此工作条件下能保持较高的破岩效率,机械钻速高,二开钻进“一趟钻”即可完成进尺,大大缩短了热储层钻井液浸泡时间,最大程度地降低了钻井液对储层的影响,降低了对储层的伤害。
2.2 钻井液体系优选
东营地区钻遇地层主要为平原组、明化镇组、馆陶组和东营组,地层成岩性差,泥岩较软易水化分散,胶结疏松易垮塌,钻井过程中井眼失稳问题严重,钻井液主要以抑制地层造浆、防止泥岩缩径、护壁和保护储层为目标[17-19],同时全井段禁止使用会堵塞储层孔隙和渗流通道的重晶石、沥青类材料和磺化类材料等。
一开钻遇地层为平原组棕黄色黏土及松散砂层,井眼尺寸较大,环空上返速度低,钻屑携带困难,不利于井眼的清洁,因此采用预水化膨润土钻井液体系,以确保具有足够的携带和悬浮能力。钻井液配方为:清水+5.0%~6.0%膨润土+0.1%~0.2%Na2CO3+0.3%HV-CMC。
二开钻遇地层为明化镇组、馆陶组和东营组,砂泥岩互层,采用护壁性、抑制性和携砂性强的聚合物钻井液体系,其配方为清水+5.0%~6.0%膨润土+0.2%~0.5% Na2CO3+1.0%~2.0% CaCl2+1.0%~2.0%铵盐+1.0%降滤失剂+2.0%~3.0%润滑剂。钻井过程中适时补充0.3%~1.0%的聚合物胶液,聚合物胶液以大分子聚合物为主,以维持钻井液性能稳定,并根据钻井液黏切和滤失量变化情况,用不同加量的小分子或大分子胶液处理。
钻进热储层前,为防止钻井液发生固相侵污,应使用好固控设备,配合高分子聚合物包被剂及时清除固相,严格控制滤失量不大于5 mL,以防止钻井液滤液进入热储层,造成热储层污染。
2.3 完井工艺
油井最常用的完井工艺是水泥固井射孔 ,环空采用水泥封固 ,可以最大限度地保证井壁稳定。钻井过程中热储层常被钻井液污染,一般认为距井壁300~400 mm地带的伤害最严重,射孔孔道长度一般为几厘米至几十厘米,孔道直径一般为几毫米至十几毫米,射孔时可以完全射穿钻井液严重伤害带,使不受污染的产层和井筒连通,可以提高储层渗透率。
该工艺需要根据测井曲线解释结果分析热储层的渗透率、孔隙度、含水层厚度及井温等参数,确定射孔枪和射孔弹的型号和孔密。测井项目包括井径、井温、井斜角、2.5及4.0 m电阻率、自然电位、自然伽马、声幅、声波、双侧向、微电极和微梯度,选择射开渗透率高、孔隙度大的层段,建立渗流通道成井,增大泄流面积,提高回灌能力。
相对于其他完井方式,该完井工艺有以下特点:1)固井防止泥岩垮塌,封堵细粉砂地层,减少细小颗粒堵塞孔喉;2)射孔形成的渗流通道长、渗透率高,可以最大程度地减少近井壁地带钻井液产生的污染;3)优选大段回灌层,避免层间干扰;4)纵向上增大了透水面积,提高了回灌能力。
2.4 洗井工艺
射孔作业结束后,采用联合方法进行洗井,确保将井筒内残留的钻井液及井壁附着的滤饼清洗干净,抽水试验前达到水清砂净,流体中悬浮物含量小于0.005%。 具体洗井工艺如下:
1)首先用清水置换井筒内钻井液,使用旋转喷射洗井工具,水嘴压降不低于2 MPa,从井底向上清洗井壁,利用工具产生的清水扰动作用,清除在井壁上黏附的滤饼;主要含水层井段要增加喷射洗井次数,洗井次数不少于3次。
2)喷射洗井结束后,使用压风机进行气举洗井,直接注入高压气体,实现限气量或者限压力可控井喷,对水层瞬时减压,不断进行减压然后恢复压力,实现地层吞吐清洗效果,进一步疏通地层通道,提高回灌能力。
3. 现场试验
探灌1井位于山东省东营市河口区三义和小区,构造上属于渤海湾盆地济阳坳陷车镇凹陷南部斜坡带的中段,完钻井深2 000 m,完钻层位为古近系东营组,热储层段1 700~1 950 m。
该井一开采用ϕ444.5 mm 钻头钻至井深350 m,ϕ339.7 mm表层套管下至井深349 m,以满足封隔表层松散地层和下入水泵的要求,水泥返至地面;二开采用ϕ311.1 mm钻头钻至井深2 000 m,ϕ244.5 mm套管下至井深1 999 m,水泥返至表层套管鞋,采用射孔完井,射孔井段厚101 m。探灌 1 井的 井身结构如图2所示。
根据测井解释成果,选取1 724~1 739,1 765~1 785,1 795~1 830和1 890~1 921 m作为射孔层段(见表1),合计长度101 m,选取127型射孔枪和127型射孔弹,射孔密度20孔/m。
表 1 测井解释结果Table 1. Logging interpretation results井段/m 厚度/m 孔隙度,% 渗透率/mD 泥质含量,% 结论 1 724~1 739 15 28.91 723.41 19.21 水层 1 765~1 785 20 31.23 695.43 18.31 水层 1 795~1 830 35 27.69 645.31 20.52 水层 1 890~1 921 31 26.45 598.34 19.56 水层 该井于2019 年1月17日完井试水,试水温度68 ℃,试水水量90~105 m3/h。1 月19日开始投产回灌,历经2个采暖季(2019—2020和2020—2021年),回灌量90~105 m3/h,平均回灌量95 m3/h 左右,液位稳定在−20 m左右;且经过2个采暖季的运行,回灌率没有衰减,能满足持续回灌要求。
4. 结论与建议
1)探灌1井将油气井的钻井完井技术应用到地热回灌井中,形成了该地区回灌井钻井完井的特色技术,现场应用效果良好,为进一步探索砂岩地层回灌奠定了坚实基础。
2)射孔完井工艺在地热开发回灌井中已得到成功应用,与传统地热回灌井钻井完井工艺相比,射孔完井工艺对地层的扰动更小,可以精确打开热储层,在后期的地热资源开发利用中,建议进一步研究该完井工艺是否可以应用于地热开发采水井。
3)为了最大程度地保护热储层,建议今后在回灌井施工过程中尝试应用空气钻井技术或欠平衡钻井技术,使井底处于欠平衡状态,井内压力低于储层压力,钻井流体无法进入储层,从而消除钻井流体对储层造成的伤害,提高单井回灌能力,同时进一步提高机械钻速。
-
表 1 长庆油田长7页岩油XC井基础参数
Table 1 Basic model parameters of the Chang 7 shale oil well XC in Changqing Oilfield
区域 参数 数值 缝网区 裂缝半长/m 60 裂缝导流能力/(mD·m) 30 渗透率/mD 2.0 导压系数/(cm2·s–1) 0.056 1 缝网体积比 0.05 基质窜流系数 1.0×10–6 受效区 半径/m 260 渗透率/mD 0.1 导压系数/(cm2·s–1) 0.013 7 未改造区 渗透率/mD 0.01 导压系数/(cm2·s–1) 0.000 6 井筒 水平段长/m 1 500 储集系数/(m3·MPa–1) 0.23 井筒半径/m 0.108 储层 有效厚度/m 14 储层中深/m 2 100 体积系数/(m3·m–3) 1.192 流体黏度/(mPa·s) 1.27 综合压缩系数/MPa–1 1.042×10–3 -
[1] MUSKAT M. The flow of homogeneous fluids through porous[J]. SPE Journal, 1946, 103(1): 219–249.
[2] 翟云芳. 渗流力学[M]. 3版. 北京: 石油工业出版社, 2009: 54-73. ZHAI Yunfang. Seepage mechanics[M]. 3rd ed. Beijing: Petroleum Industry Press, 2009: 54-73.
[3] 齐与峰. 砂岩油田注水开发合理井网研究中的几个理论问题[J]. 石油学报,1990,11(4):51–60. doi: 10.3321/j.issn:0253-2697.1990.04.005 QI Yufeng. Some theoretical considerations on optimal well pattern analysis in a water flooding sandy oil reservoir[J]. Acta Petrolei Sinica, 1990, 11(4): 51–60. doi: 10.3321/j.issn:0253-2697.1990.04.005
[4] 尹建,郭建春,曾凡辉. 水平井分段压裂射孔间距优化方法[J]. 石油钻探技术,2012,40(5):67–71. doi: 10.3969/j.issn.1001-0890.2012.05.015 YIN Jian, GUO Jianchun, ZENG Fanhui. Perforation spacing optimization for staged fracturing of horizontal well[J]. Petroleum Drilling Techniques, 2012, 40(5): 67–71. doi: 10.3969/j.issn.1001-0890.2012.05.015
[5] 蒲春生,陈庆栋,吴飞鹏,等. 致密砂岩油藏水平井分段压裂布缝与参数优化[J]. 石油钻探技术,2014,42(6):73–79. PU Chunsheng, CHEN Qingdong, WU Feipeng, et al. Staged fracturing pattern and parameter optimization of horizontal wells in tight sandstone oil reservoir[J]. Petroleum Drilling Techniques, 2014, 42(6): 73–79.
[6] 蒋廷学,卞晓冰,袁凯,等. 页岩气水平井分段压裂优化设计新方法[J]. 石油钻探技术,2014,42(2):1–6. JIANG Tingxue, BIAN Xiaobing, YUAN Kai, et al. A new method in staged fracturing design optimization for shale gas horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 1–6.
[7] 刘闯. 水平井水力压裂数值模拟与施工参数优化研究[D]. 合肥: 中国科学技术大学, 2017. LIU Chuang. Numerical investigating the hydraulic fracturing of horizontal well and the optimization of stimulation parameters[D]. Hefei: University of Science and Technology of China, 2017.
[8] 王天驹,陈赞,王蕊,等. 致密砂岩油藏体积压裂簇间距优化新方法[J]. 新疆石油地质,2019,40(3):351–356. WANG Tianju, CHEN Zan, WANG Rui, et al. A new method for cluster spacing optimization during volumetric fracturing in tight sandstone oil reservoirs[J]. Xinjiang Petroleum Geology, 2019, 40(3): 351–356.
[9] 林旺,范洪富,闫林,等. 致密油藏注水吞吐参数优化模拟:以吉林扶余油层为例[J]. 中国科技论文,2019,14(9):937–942. doi: 10.3969/j.issn.2095-2783.2019.09.001 LIN Wang, FAN Hongfu, YAN Lin, et al. Optimization of engineering parameters for horizontal huff and puff development of tight reservoir: taking Fuyu oil layer in Jilin as an example[J]. China Sciencepaper, 2019, 14(9): 937–942. doi: 10.3969/j.issn.2095-2783.2019.09.001
[10] 王继坤. 致密砂岩油藏压后关井时间优化模型研究[D]. 北京: 中国地质大学(北京), 2020. WANG Jikun. Study on optimization model of shut-in time after fracturing in tight sandstone reservoir[D]. Beijing: China University of Geosciences(Beijing), 2020.
[11] 张矿生,唐梅荣,陈文斌,等. 压裂裂缝间距优化设计[J]. 科学技术与工程,2021,21(4):1367–1374. doi: 10.3969/j.issn.1671-1815.2021.04.017 ZHANG Kuangsheng, TANG Meirong, CHEN Wenbin, et al. Optimization of fracture spacing for hydraulic fracturing[J]. Science Technology and Engineering, 2021, 21(4): 1367–1374. doi: 10.3969/j.issn.1671-1815.2021.04.017
[12] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007 FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614. doi: 10.3969/j.issn.1672-7703.2019.05.007
[13] 董姜畅,王爱国,樊志强,等. 鄂尔多斯盆地中部延长组长7段致密储层成因及控制因素[J]. 断块油气田,2021,28(4):446–451. DONG Jiangchang,WANG Aiguo,FAN Zhiqiang, et al. Origin and dominated factors of Chang 7 Member tight reservoirs in Yanchang formation, central Ordos Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 446–451.
[14] 杨华,梁晓伟,牛小兵,等. 陆相致密油形成地质条件及富集主控因素:以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发,2017,44(1):12–20. YANG Hua, LIANG Xiaowei, NIU Xiaobing, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12–20.
[15] 付金华,喻建,徐黎明,等. 鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素[J]. 中国石油勘探,2015,20(5):9–19. doi: 10.3969/j.issn.1672-7703.2015.05.002 FU Jinhua, YU Jian, XU Liming, et al. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity[J]. China Petroleum Exploration, 2015, 20(5): 9–19. doi: 10.3969/j.issn.1672-7703.2015.05.002
[16] 赵国翔,姚约东,王链,等. 页岩油藏微尺度流动特征及应力敏感性分析[J]. 断块油气田,2021,28(2):247–252. ZHAO Guoxiang, YAO Yuedong, WANG Lian, et al. Microscale transport behaviors of shale oil and stress sensitivity analysis[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 247–252.
[17] 雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017 LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
[18] 王秀影,吴通,蔡军,等. 饶阳凹陷页岩油储层应力敏感规律[J]. 钻井液与完井液,2020,37(2):185–191. doi: 10.3969/j.issn.1001-5620.2020.02.009 WANG Xiuying, WU Tong, CAI Jun, et al. Patterns of stress sensitivity of the shale oil reservoirs in Raoyang Depression[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 185–191. doi: 10.3969/j.issn.1001-5620.2020.02.009
[19] 慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019 MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132. doi: 10.3969/j.issn.1006-6535.2021.02.019
[20] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075 ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
[21] 管保山,刘玉婷,梁利,等. 页岩油储层改造和高效开发技术[J]. 石油钻采工艺,2019,41(2):212–223. GUAN Baoshan, LIU Yuting, LIANG Li, et al. Shale oil reservoir reconstruction and efficient development technology[J]. Oil Drilling & Production Technology, 2019, 41(2): 212–223.
[22] 闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058 YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
[23] 王磊,盛志民,赵忠祥,等. 吉木萨尔页岩油水平井大段多簇压裂技术[J]. 石油钻探技术,2021,49(4):106–111. doi: 10.11911/syztjs.2021091 WANG Lei, SHENG Zhimin, ZHAO Zhongxiang, et al. Large-section and multi-cluster fracturing technology for horizontal wells in the Jimsar shale oil reservoir[J]. Petroleum Drilling Techniques, 2021, 49(4): 106–111. doi: 10.11911/syztjs.2021091
[24] 沈产量,张景皓,张璐,等. 基于离散裂缝方法的多段压裂水平井数值试井模型[J]. 油气井测试,2021,30(1):1–8. SHEN Chanliang, ZHANG Jinghao, ZHANG Lu, et al. Numerical well test model of multi-stage fractured horizontal well based on discrete fracture method[J]. Well Testing, 2021, 30(1): 1–8.
[25] LIU Hui, LIAO Xinwei, TANG Xuefeng, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108042. doi: 10.1016/j.petrol.2020.108042
[26] LIE K A. An introduction to reservoir simulation using MATLAB/GNU octave: user guide for the MATLAB Reservoir Simulation Toolbox (MRST)[M]. Cambridge: Cambridge University Press, 2019: 19–110.
-
期刊类型引用(7)
1. 何斌斌,柳华杰,郑若臣,步玉环,殷慧,霍美桦,张军义,马小龙. 盐岩地层矿物离子对水泥浆性能的影响规律. 中国石油大学学报(自然科学版). 2024(06): 85-94 . 百度学术
2. 周军,胡承强,彭井宏,梁光川,黄薪宇,马俊杰,王涛. 基于腔体稳定性的盐岩储气库注采方案优化研究. 断块油气田. 2023(01): 161-167 . 百度学术
3. 霍宏博,刘东东,陶林,王德英,宋闯,何世明. 基于CO_2提高采收率的海上CCUS完整性挑战与对策. 石油钻探技术. 2023(02): 74-80 . 本站查看
4. 王涛,申峰,展转盈,窦倩,郭庆. 页岩气小井眼水平井纳米增韧水泥浆固井技术. 石油钻探技术. 2023(03): 51-57 . 本站查看
5. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
6. 赵新学,陈鹏,王木乐,郭伟成,马文涛,王世红,郭永胜. 普光气田套管补贴用抗硫膨胀管及其性能测试. 断块油气田. 2023(06): 1034-1039 . 百度学术
7. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 . 百度学术
其他类型引用(0)