冀东油田浅层小井眼侧钻水平井钻井完井关键技术

李云峰, 潘俊英, 周岩, 朱宽亮, 王在明

李云峰, 潘俊英, 周岩, 朱宽亮, 王在明. 冀东油田浅层小井眼侧钻水平井钻井完井关键技术[J]. 石油钻探技术, 2020, 48(6): 8-14. DOI: 10.11911/syztjs.2020090
引用本文: 李云峰, 潘俊英, 周岩, 朱宽亮, 王在明. 冀东油田浅层小井眼侧钻水平井钻井完井关键技术[J]. 石油钻探技术, 2020, 48(6): 8-14. DOI: 10.11911/syztjs.2020090
LI Yunfeng, PAN Junying, ZHOU Yan, ZHU Kuanliang, WANG Zaiming. Key Technologies for Drilling and Completing Shallow Slim Hole Sidetracking Horizontal Wells in the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(6): 8-14. DOI: 10.11911/syztjs.2020090
Citation: LI Yunfeng, PAN Junying, ZHOU Yan, ZHU Kuanliang, WANG Zaiming. Key Technologies for Drilling and Completing Shallow Slim Hole Sidetracking Horizontal Wells in the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(6): 8-14. DOI: 10.11911/syztjs.2020090

冀东油田浅层小井眼侧钻水平井钻井完井关键技术

基金项目: 中国石油冀东油田分公司科技项目“老井利用侧钻钻完井技术研究与应用”(编号:ZJ2017C03)资助
详细信息
    作者简介:

    李云峰(1981—),男,陕西安康人,2006年毕业于西安石油大学石油工程专业,高级工程师,主要从事钻井工艺技术研究。E-mail: liyunfeng1981@163.com

  • 中图分类号: 243+.9

Key Technologies for Drilling and Completing Shallow Slim Hole Sidetracking Horizontal Wells in the Jidong Oilfield

  • 摘要: 为解决冀东油田浅层ϕ139.7 mm套管开窗侧钻水平井存在的钻井泵压高、机械钻速低、油水层封隔效果差、油井投产后含水上升快等问题,选用了可以降低钻井泵压的ϕ79.4 mm非标钻杆,试用了能给钻头柔性加压的小尺寸水力加压提速工具,选用了ϕ95.3 mm非标套管、采用了膨胀悬挂尾管筛管顶部注水泥完井技术,并制定了提高侧钻小井眼固井质量的技术措施,形成了适用于冀东油田浅层小井眼侧钻水平井的钻井完井关键技术。该技术在冀东油田5口浅层高含水油藏侧钻水平井进行了应用,与未应用该技术的邻井相比,试验井泵压得到了有效控制,机械钻速提高了24.6%,钻井周期缩短了14.1%,同时解决了小井眼窄间隙井眼封隔差的问题,实现了对水平段水层的封隔和侧钻窗口处的密封,避免了对后期采油生产的影响。试验结果表明,冀东油田浅层小井眼侧钻水平井钻井完井关键技术能够提高小井眼侧钻水平井的机械钻速、缩短钻井周期和有效分隔油水层,提速提效效果显著,具有较好的推广应用价值。
    Abstract: In order to solve the technical difficulties of sidetracking with ϕ139.7 mm casing in shallow horizontal wells of the Jidong Oilfield, which included high pumping pressure, low ROP, poor oil-water layers isolation effect, and rapid rise of water cut after the oil well was put into production, etc., many countermeasures were taken. Those technologies include adoption of ϕ79.4 mm non-standard drill pipe to lower the mud pump, adoption of a small size hydraulic pressurization and speed-up tool that can flexibly pressurize the drill bit to increase the ROP, selection of ϕ95.3 mm non-standard casing, adoption of the top cementing completion with expansive suspension liner and screen liner, and formulation of technical measures to improve the cementing quality of slim hole sidetracking. The key technologies for drilling and completion of shallow slim hole sidetracked horizontal wells in the Jidong Oilfield was thus formed. These technologies were tested in 5 shallow sidetracking horizontal wells with high water-cut in the Jidong Oilfield. Compared with adjacent wells without adoption of these technologies, the pumping pressure was effectively controlled, the ROP was increased by 24.6%, the drilling cycle was shortened by 14.1%. At the same time, the poor sealing problem of the slim hole with a narrow gap was solved, and the isolation of the aquifers in horizontal section and seal of the sidetracking window was achieved, by which the impact on the later oil production was avoided. The test results showed that the proposed key technologies could effectively increase the ROP in the slim hole sidetracking in horizontal wells, shorten the drilling cycle and isolate oil and water layers. With good effect in speed-up and efficiency improvement, the technologies have a high potential for popularization and application.
  • 图  1   小尺寸水力加压提速工具的结构

    Figure  1.   Structural diagram of small size hydraulic pressurization and speed-up tool

    图  2   完井管柱优化示意

    Figure  2.   Schematic diagram of optimized completion string

    图  3   液压刚性套管扶正器的结构

    Figure  3.   Structure of hydraulic rigid casing centralizer

    图  4   CPA2井完井管柱示意

    Figure  4.   Schematic diagram of completion string in Well CPA2

    表  1   2种规格钻杆的施工泵压

    Table  1   Pumping pressures of drill pipe with two specifications

    井深/m排量/(L·s−1泵压/MPa
    ϕ73.0 mm钻杆ϕ79.4 mm钻杆
    1 700817.9115.09
    1 90019.8615.58
    2 10021.4816.38
    2 30023.1217.34
    2 50024.7318.36
    下载: 导出CSV

    表  2   不同尺寸套管作为完井尾管的优缺点

    Table  2   Advantages and disadvantages of taking casing with different sizes as completion liner

    管体外径/
    mm
    管体内径/
    mm
    接箍外径/
    mm
    环空间隙/
    mm
    对后期生产作业的影响
    101.6 86.0104.0 8.2 受井眼曲率影响,存在不能安全下入的风险,环空间隙小,水泥环薄
    95.382.3108.011.4 可以安全下入,采用“筛管+顶部注水泥”完井方式的井可用ϕ60.3 mm地质钻杆钻盲板
    88.976.0108.014.5 由于内径小,采用“筛管+顶部注水泥”完井方式的井没有适用于钻盲板的钻杆
    73.062.0 89.522.5
    下载: 导出CSV

    表  3   膨胀式尾管悬挂器膨胀前后的主要参数

    Table  3   The key parameters of expansive hanger before and after expansion

    条件规格外径/mm内径/mm悬挂器长度/m胶筒外径/mm悬挂力/kN密封压差/MPa
    膨胀前ϕ139.7 mm×ϕ95.3 mm108.0 94.5411250050
    膨胀后118.5105.5
    下载: 导出CSV

    表  4   小井眼侧钻水平井钻井完井关键技术应用情况

    Table  4   Application of key technologies for slim hole sidetracking horizontal wells

    井号井深/
    m
    裸眼段长度/
    m
    水平段长度/
    m
    泵压/
    MPa
    机械钻速/
    (m·h−1
    钻井周期/
    d
    固井优质率,
    %
    产液量/
    (m3·d−1
    产油量/
    (t·d−1
    含水率,
    %
    CPA12 300.0065015014~165.6418.1210012.10 10.61 12.30
    CPA22 181.0053120515~166.1213.421008.966.7824.33
    CPA32 317.0046714314~156.0412.381009.077.2919.63
    CPA42 236.0075916715~166.5815.561006.545.3817.74
    CPA52 183.0066818913~145.9815.941007.296.5110.70
    邻井2 235.0068917616~184.8213.21 866.893.2153.41
    下载: 导出CSV

    表  5   钻井提速技术应用效果对比

    Table  5   Application effect of drilling speed-up technology

    井号施工井段/m钻井液密度/
    (kg·L−1
    钻井排量/
    (L·s−1
    泵压/MPa进尺/m机械钻速/
    (m·h−1
    钻井周期/d备注
    CPA21 650.00~2 181.001.11~1.157~915~165316.1213.42应用提速技术
    CPB11 700.00~2 206.001.11~1.156~818~205064.8919.65未用提速技术
    CPB21 680.00~2 198.001.11~1.157~919~225185.0318.56
    下载: 导出CSV
  • [1] 屈亚光,刘月田,胥小伟. 高尚堡多层系复杂断块油藏含水率变化影响因素研究[J]. 石油天然气学报, 2010, 32(2): 120–124, 128. doi: 10.3969/j.issn.1000-9752.2010.02.028

    QU Yaguang, LIU Yuetian, XU Xiaowei. Influential factors of water-cut variation in multi-layer and complicated fault-block reservoirs in Gaoshangbao Oilfield[J]. Journal of Oil and Gas Technology, 2010, 32(2): 120–124, 128. doi: 10.3969/j.issn.1000-9752.2010.02.028

    [2] 王群一,毕永斌,张梅,等. 南堡陆地油田水平井开发底水油藏油水运动规律[J]. 油气地质与采收率, 2012, 19(6): 91–94. doi: 10.3969/j.issn.1009-9603.2012.06.022

    WANG Qunyi, BI Yongbin, ZHANG Mei, et al. Fluidity rule study on bottom water reservoir for horizontal wells in onshore Nanpu Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 91–94. doi: 10.3969/j.issn.1009-9603.2012.06.022

    [3] 肖国华,付小坡,王金生,等. 水平井预置速凝堵剂管外封窜技术[J]. 特种油气藏, 2018, 25(6): 136–139. doi: 10.3969/j.issn.1006-6535.2018.06.025

    XIAO Guohua,FU Xiaopo,WANG Jinsheng,et al. External plugging with preset quick-setting plugging agent in horizontal well[J]. Special Oil and Gas Reservoirs, 2018, 25(6): 136–139. doi: 10.3969/j.issn.1006-6535.2018.06.025

    [4] 宋显民,张立民,李良川,等. 水平井和侧钻水平井筛管顶部注水泥完井技术[J]. 石油学报, 2007, 28(1): 119–121, 126. doi: 10.3321/j.issn:0253-2697.2007.01.024

    SONG Xianmin, ZHANG Limin, LI Liangchuan, et al. Top screen pipe cementing technology of casing and liner in horizontal well and sidetracking horizontal well[J]. Acta Petrolei Sinica, 2007, 28(1): 119–121, 126. doi: 10.3321/j.issn:0253-2697.2007.01.024

    [5] 李建强, 李路宽, 寇德超, 等. 侧钻水平井悬挂筛管顶部注水泥完井技术[J]. 石油钻采工艺, 2007, 29(增刊1): 25–27, 120.

    LI Jianqiang, LI Lukuan, KOU Dechao, et al. Research and application of completion technology of sidetrack horizontal well top cementing with hanging screen[J]. Oil Drilling & Production Technology, 2007, 29(supplement1): 25–27, 120.

    [6] 李文魁,陈建军,王云,等. 国内外小井眼井钻采技术的发展现状[J]. 天然气工业, 2009, 29(9): 54–56, 63. doi: 10.3787/j.issn.1000-0976.2009.09.014

    LI Wenkui, CHEN Jianjun, WANG Yun, et al. The status-quo of slim hole drilling technology in China and the world[J]. Natural Gas Industry, 2009, 29(9): 54–56, 63. doi: 10.3787/j.issn.1000-0976.2009.09.014

    [7] 樊继强,王委,陈小元,等. 苏北盆地小井眼侧钻井关键技术研究与应用[J]. 石油钻探技术, 2019, 47(5): 22–27. doi: 10.11911/syztjs.2019102

    FAN Jiqiang, WANG Wei, CHEN Xiaoyuan, et al. Research and application of key technologies for slim hole sidetracking wells in the Subei Basin[J]. Petroleum Drilling Techniques, 2019, 47(5): 22–27. doi: 10.11911/syztjs.2019102

    [8] 王建龙,张雯琼,于志强,等. 侧钻水平井水平段延伸长度预测及应用研究[J]. 石油机械, 2016, 44(3): 26–29.

    WANG Jianlong, ZHANG Wenqiong, YU Zhiqiang, et al. Prediction of sidetrack horizontal well extension length[J]. China Petroleum Machinery, 2016, 44(3): 26–29.

    [9] 汪杰,郭奇,马辉,等. 水力加压装置在滑动钻井中的应用[J]. 复杂油气藏, 2012, 5(1): 72–75. doi: 10.3969/j.issn.1674-4667.2012.01.023

    WANG Jie, GUO Qi, MA Hui, et al. Application of hydraulic thruster in slide drilling[J]. Small Hydrocarbon Reservoirs, 2012, 5(1): 72–75. doi: 10.3969/j.issn.1674-4667.2012.01.023

    [10] 李子丰,杨海滨,许春田,等. 定向井滑动钻进送钻原理与技术[J]. 天然气工业, 2013, 33(12): 94–98.

    LI Zifeng, YANG Haibin, XU Chuntian, et al. Bit feed principles and technologies in slide-drilling directional wells[J]. Natural Gas Industry, 2013, 33(12): 94–98.

    [11] 张宏军. 胜利油田开窗侧钻井完井固井工艺技术的改进与发展[J]. 钻采工艺, 2009, 32(3): 103–105. doi: 10.3969/j.issn.1006-768X.2009.03.034

    ZHANG Hongjun. Well completion and cementing technology in sidetracked hole of Shengli Oilfield[J]. Drilling & Production Technology, 2009, 32(3): 103–105. doi: 10.3969/j.issn.1006-768X.2009.03.034

    [12] 白彬珍,臧艳彬,周伟,等. 深井小井眼定向随钻扩孔技术研究与应用[J]. 石油钻探技术, 2013, 41(4): 73–77. doi: 10.3969/j.issn.1001-0890.2013.04.016

    BAI Binzhen, ZANG Yanbin, ZHOU Wei, et al. Study and application of reaming while drilling in deep directional wells[J]. Petroleum Drilling Techniques, 2013, 41(4): 73–77. doi: 10.3969/j.issn.1001-0890.2013.04.016

    [13] 韩耀图,刘鹏,林家昱,等. 侧钻水平井固井充填防砂一体化工艺的应用:以曹妃甸11-2油田为例[J]. 断块油气田, 2018, 25(3): 390–393.

    HAN Yaotu, LIU Peng, LIN Jiayu, et al. Application of cementing and gravel packing sand control integrated technology to sidetracked horizontal well: taking Caofeidian 11-12 Oilfield as an example[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 390–393.

    [14] 马庆涛,范光第,刘程,等. 悬空侧钻技术在常规水平井中的应用[J]. 钻采工艺, 2016, 39(3): 1–3. doi: 10.3969/J.ISSN.1006-768X.2016.03.01

    MA Qingtao, FAN Guangdi, LIU Cheng, et al. Application of open hole sidetracking technology in the conventional horizontal wells[J]. Drilling & Production Technology, 2016, 39(3): 1–3. doi: 10.3969/J.ISSN.1006-768X.2016.03.01

    [15] 莫继春,杨玉龙,李杨,等. DRK韧性水泥浆体系的研制[J]. 石油钻采工艺, 2005, 27(2): 21–24. doi: 10.3969/j.issn.1000-7393.2005.02.007

    MO Jichun, YANG Yulong, LI Yang, et al. Research of DRK toughness slurry system[J]. Oil Drilling & Production Technology, 2005, 27(2): 21–24. doi: 10.3969/j.issn.1000-7393.2005.02.007

    [16] 朱磊,耿亚楠,许明标,等. 适合小井眼固井的韧性水泥浆体系室内研究[J]. 石油天然气学报, 2014, 36(9): 106–108, 112. doi: 10.3969/j.issn.1000-9752.2014.09.022

    ZHU Lei, GENG Yanan, XU Mingbiao, et al. Laboratory research of malleable cement slurry system suitable for slim-hole cementing[J]. Journal of Oil and Gas Technology, 2014, 36(9): 106–108, 112. doi: 10.3969/j.issn.1000-9752.2014.09.022

图(4)  /  表(5)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  390
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-07-11
  • 网络出版日期:  2020-09-01
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回