稠油蒸汽吞吐辅助层内水热催化裂解数值模拟研究

尉雪梅

尉雪梅. 稠油蒸汽吞吐辅助层内水热催化裂解数值模拟研究[J]. 石油钻探技术, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019
引用本文: 尉雪梅. 稠油蒸汽吞吐辅助层内水热催化裂解数值模拟研究[J]. 石油钻探技术, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019
Wei Xuemei. Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil[J]. Petroleum Drilling Techniques, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019
Citation: Wei Xuemei. Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil[J]. Petroleum Drilling Techniques, 2015, 43(3): 103-108. DOI: 10.11911/syztjs.201503019

稠油蒸汽吞吐辅助层内水热催化裂解数值模拟研究

详细信息
    作者简介:

    尉雪梅(1981—),女,山东莱阳人,2004年毕业于中国石油大学(华东)石油工程专业,2007年获中国石油大学(华东)油气田开发工程专业硕士学位,工程师,主要从事稠油油藏高效开发方面的研究.

  • 中图分类号: TE254

Numerical Simulation of Steam Huff-and-Puff Assisted Catalytic Aquathermolysis on Heavy Oil

  • 摘要: 稠油蒸汽吞吐辅助层内催化裂解过程中,层内原油随温度场分布不同而发生不同程度的化学改质,为近似模拟层内原油的这一变化,预测稠油蒸汽吞吐辅助层内催化裂解后油井的产能,在蒸汽吞吐数值模型及催化裂解作用机理的基础上,仅考虑油、水两相流动,不考虑重力和毛管力作用,将地层中的温度场分布对稠油催化裂解的影响,表征为不同温度范围内地下稠油黏温曲线的变化,并将该变化引入成熟蒸汽吞吐数值模拟模型,建立了二维两相蒸汽吞吐辅助催化裂解数值模型,并给出了求解方法.利用所建模型对孤东K92N6井第3轮次蒸汽吞吐辅助催化裂解矿场试验进行了模拟计算,该井该轮次预测周期产油量为4 560.4 t,实际产油量为4 899.7 t,预测误差为6.92%,预测精度符合工程要求.研究结果表明:根据蒸汽吞吐过程中井周温度分布,将催化裂解原油分为未反应型、低温反应型和高温反应型,并将这3类裂解改质后稠油的黏温关系回归成温度的指数函数,引入到成熟蒸汽吞吐模型,可实现层内稠油蒸汽吞吐辅助催化裂解不可逆改质过程的数学近似表征模拟,模拟结果可以为蒸汽吞吐辅助层内催化裂解技术工艺参数的优化、产能预测提供依据.
    Abstract: During heavy oil catalytic aquathermolysis assisted by steam huff and puff, chemical properties of crude oil within these formations may vary to some degree due to temperature distribution differences. To appropriately simulate such changes of crude oil in these formations and predict well productivity with steam-assisted huff-and-puff in heavy oil development, the impact of distribution of temperature fields within the formation on heavy oil catalytic aquathermolysis are expressed in terms of viscosity change versus temperature. In the simulation, only the two-phase flow of oil and water are considered while gravity and capillary forces are not taken into account.Then those changes are introduced into the well-developed model in numerical simulation of steam-assisted huff-and-puff operations to construct numerical model for 2D two-phase steam-assisted huff-and-puff operations. In addition, techniques available to obtain relevant solutions are also provided. The model was used to simulate field tests of the fourth round of steam-assisted huff-and-puff catalytic aquathermolysis in Well K92N6 in the Gudong Oilfield. According to calculation results, oil production in this round of development would be around 4 560.4 t, while the actual production during the period was determined to be 4 899.7 t. The difference between actual and simulated was reasonable, about 6.92%, which could meet engineering requirements. Research results demonstrated that crude oil for catalytic cracking can be classified into three categories: unreacted, low-temperature reactive and high-temperature reactive according to temperature distribution around the borehole during steam-assisted huff-and-puff. The viscosity-temperature relationships of crude oil after cracking and modification of the three types can be placedinto theexponential function of temperatures and then be introduced into a mature steam-assisted huff-and-puff model to perform mathematically approximate characterization and simulation of the irreversible property changing progress in catalytic cracking during steam-assisted huff-and-puff processes. Relevant simulation results will provide guidance in optimization of technical parameters and inthe prediction of productivity for catalytic cracking techniques in steam-assisted huff-and-puff operations.
  • [1] 王洋,蒋平,葛际江,等.井楼油田氮气辅助蒸汽吞吐机理实验研究[J].断块油气田,2013,20(5):667-670.Wang Yang,Jiang Ping,Ge Jijiang,etal.Laboratory study on mechanism of nitrogen-assisted steam stimulation in Jinglou Oilfield[J].Fault-Block Oil Gas Field,2013,20(5):667-670.
    [2] 杨阳,刘慧卿,庞占喜,等.孤岛油田底水稠油油藏注氮气辅助蒸汽吞吐的选区新方法[J].油气地质与采收率,2014,21(3):58-61.Yang Yang, Liu Huiqing, Pang Zhanxi,et al. A new method of selecting zone for nitrogen-assisted steam stimulation in heavy oil reservoir with bottom water in Gudao Oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(3):58-61.
    [3] 梁丹,冯国智,曾祥林,等.海上稠油两种热采方式开发效果评价[J].石油钻探技术,2014,42(1):95-99.Liang Dan,Feng Guozhi,Zeng Xianglin,et al.Evaluation of two thermal methods in offshore heavy oilfields development[J].Petroleum Drilling Techniques,2014,42(1):95-99.
    [4] 卢川,刘慧卿,卢克勤,等.浅薄层稠油水平井混合气与助排剂辅助蒸汽吞吐研究[J].石油钻采工艺,2013,35(2):106-109.Lu Chuan,Liu Huiqing,Lu Keqin, et al.Flexibility study of horizontal well cyclic steam simulation assisted by combination gasand cleanup addictive for shallow-thin heavy oil reservoir[J]. Oil Drilling Production Technology,2013,35(2):106-109.
    [5] 巩永刚,王杰祥,王小林.水热裂解开采稠油技术[J].石油钻探技术,2006,34(2):61-64.Gong Yonggang,Wang Jiexiang,Wang Xiaolin.Aquathermolysis:a techniques for recovering heavy oil reservoirs[J].Petroleum Drilling Techniques,2006,34(2):61-64.
    [6] 赵晓非.超稠油水热裂解反应催化剂及其载体的研制[D].大庆:大庆石油学院,2006.Zhao Xiaofei.Aquathermolysis catalyst of super heavy oil and development of its carrier [D].Daqing:Daqing Petroleum Institute,2006.
    [7]

    Clark P D,Hyne J B.Steam oil chemical reactions:mechanisms for the aquathermolysis of heavy oil[J].Aostra Journal of Reacher,1984,1(1):15-20.

    [8]

    Monin J C,Audlbert A.Thermal cracking of heavy-oil mineral matrix system[J].SPE Reservoir Engineering,1988,3(4):1243-1250.

    [9] 郑延成,李克华,苑权,等.水热催化裂解对超稠油组成的影响[J].石油钻探技术,2005,33(2):57-59.Zheng Yancheng,Li Kehua,Yuan Quan,et al.Effects of aquathermolysis on heavy oil components[J].Petroleum Drilling Techniques,2005,33(2):57-59.
    [10] 范洪富,张翼,刘永建.蒸气开采过程中金属盐对稠油粘度及平均分子量的影响[J].燃料化学学报,2003,31(5):429-433.Fan Hongfu,Zhang Yi,Liu Yongjian.Effects of metal salts and mineral on viscosity and molecular weight of heavy oil under steam condition[J].Journal of Fuel Chemistry and Technology,2003,31(5):429-433.
    [11]

    Clark P D,Hyne J B,Tyrer J D.Chemistry of organicsulfur compound type occurring in heavy oil sands:1.high temperature hydrolysis and thermolysis of therahydrothiophene in relation to steam stimulation processes[J].Fuel,1983,62(5):959-962.

    [12] 王杰祥,樊泽霞,任熵,等.单家寺稠油催化水热裂解实验研究[J].油田化学,2006,23(3):205-208.Wang Jiexiang,Fan Zexia,Ren Shang,et al.An experimental study on catalytic aquathermolysis of Shanjiasi heavy oil[J].Oilfield Chemistry,2006,23(3):205-208.
    [13] 樊泽霞,赵福麟,王杰祥,等.超稠油供氢水热裂解改质降黏研究[J].燃料化学学报,2006,34(3):315-318.Fan Zexia,Zhao Fulin,Wang Jiexiang,et al.Upgrading and viscosity reduction of super heavy oil by aqua-thermolysis with hydrogen donor[J].Journal of Fuel Chemistry and Technology,2006,34(3):315-318.
    [14] 范洪富,刘永建,赵晓非,等.国内首例井下水热裂解催化降粘开采稠油现场试验[J].石油钻采工艺,2001,23(3):42-44,85.Fan Hongfu,Liu Yongjian,Zhao Xiaofei,et al.First field experimental of recovery heavy oil using down-hole catalytic method in China[J].Oil Drilling Production Technology,2001,23(3):42-44,85.
    [15] 孙国宝,盖平原,刘慧卿.水平井蒸汽吞吐三维静态温度分布计算模型[J].断块油气田,2010,17(5):566-570.San Guobao,Gai Pingyuan,Liu Huiqing.Calculation model of three-dimension-al static temperature profile for steam huff and puff of horizontal well[J].Fault-Block Oil Gas Field,2010,17(5):566-570.
    [16]

    Mueller T D.A mathematical model of reservoir response during the cyclic injection of steam[J].Society of Petroleum Engineers Journal,1967,7(2):174-188.

    [17]

    Ferrer J,Maracalbo M S,Farouq Ali.A three-phase,two-dimensional compositional thermal simulator for steam in processes[J].Journal of Canadian Petroleum Technology,1977,16(1):78-90.

    [18]

    Crookston R B,Culham W E,Chen W H.A numerical simulation model for thermal recovery processes[J].Society of Petroleum Engineers Journal,1979,19(1):37-58.

    [19]

    Rubin B,Buchanan W L.A general purpose thermal model[J].Society of Petroleum Engineers Journal,1985,25(2):202-214.

    [20] 李冬冬.超稠油油藏水平井蒸汽复合吞吐渗流数学模型研究[D].青岛:中国石油大学(华东)石油工程学院,2012.Li Dongdong.Study on percolation mathematical model of combined steam stimulation with horizontal well in super heavy oil reservoir[D].Qingdao:China University of Petroleum (Huadong),School of Petroleum Engineering,2012.
  • 期刊类型引用(3)

    1. 田亚鹏,鞠斌山,胡杰. 考虑蒸汽超覆的稠油蒸汽吞吐产能预测模型. 石油钻探技术. 2018(01): 110-116 . 本站查看
    2. 李南,丁祖鹏,焦松杰,焦红梅. 渤海湾裂缝性稠油油藏合理开发方式. 断块油气田. 2017(03): 405-408 . 百度学术
    3. 陈欢庆,石成方,王珏,姚尧. 稠油热采储层精细油藏描述研究进展. 断块油气田. 2016(05): 549-553 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  3604
  • HTML全文浏览量:  114
  • PDF下载量:  4224
  • 被引次数: 4
出版历程
  • 收稿日期:  2014-10-12
  • 修回日期:  2015-04-07
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回