多相流全瞬态温度压力场耦合模型求解及分析

何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根

何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根. 多相流全瞬态温度压力场耦合模型求解及分析[J]. 石油钻探技术, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
引用本文: 何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根. 多相流全瞬态温度压力场耦合模型求解及分析[J]. 石油钻探技术, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
Citation: He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005

多相流全瞬态温度压力场耦合模型求解及分析

基金项目: 

国家自然科学基金重点项目“控压钻井测控理论及关键问题研究”(编号:51334003),国家自然科学基金面上项目“深层碳酸盐岩地层与井筒耦合作用机理与压力自动控制方法研究”(编号:51274221)、“控压钻井井筒多相流体瞬态变质量流动理论及工况解释方法研究”(编号:51274045)和“基于模型预测控制理论与状态机架构的控压钻井压力控制方法研究”(编号:51374223)联合资助.

详细信息
    作者简介:

    何淼(1989—),男,湖北荆门人,2011年毕业于中国石油大学(华东)工程力学专业,在读博士研究生,主要从事控压钻井、欠平衡钻井和井筒多相流方面的研究.

  • 中图分类号: TE21

Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow

  • 摘要: 为准确掌握高温高压条件下环空多相流的流动特性,基于井筒多相流、传热学理论,充分考虑循环流体物性参数随温度压力的变化,建立了适用于深井、超深井的井筒多相流全瞬态温度压力场耦合模型,并提出了迭代求解算法,以塔里木油田某深井为例分析了井筒瞬态温度、压力耦合变化规律.结果表明:循环8 h后井底钻井液的密度由1 360 kg/m3升至1 460 kg/m3,塑性黏度由8.6 mPa·s升至13.8 mPa·s;开始循环时井底压力迅速降低,循环0.2 h时降至最低,然后逐渐升高,最后趋于稳定;井底钻井液的密度和塑性黏度随循环时间增长而增大;气侵量对井底压力的影响最大,钻井液地面密度、排量、井口回压次之,钻井液地面塑性黏度的影响最小.分析结果可为深井、超深井水力参数设计提供理论指导.
    Abstract: To accurately identify the features of annular multiphase flow in high temperature high pressure (HTHP) conditions, a fully transient temperature and pressure coupling model for multiphase flow in deep or ultra-deep wells was established according to the theory of wellbore multiphase flow and heat transfer. Considering the changes of physical parameters of circulating fluid with temperature and pressure, and the iterative algorithm was proposed. In this paper, a deep well in Tarim Oilfield was analyzed for the wellbore transient temperature and pressure coupling. The results indicated that the drilling fluid density at bottomhole increased from 1 360 kg/m3 to 1 460 kg/m3, and the plastic viscosity increased from 8. 6 mPa·s to 13.8 mPa·s after circulating for 8 hours. Both the drilling fluid density and the bottomhole plastic viscosity increased over the circulating time, and further, the bottomhole pressure dropped linearly at initial circulation and then to the minimum at 0.2 h. Later, it increased logarithmically and tended to be finally stable. In view of the impact on bottomhole pressure, the factors are were prioritized in a descending order as follows:gas influx, surface drilling fluid density, displacement, wellhead back pressure, and surface drilling fluid plastic viscosity. An analysis of the results could provide certain theoretical guidance for the hydraulic parameter design of deep and ultra-deep wells.
  • [1] 曾义金,刘建立.深井超深井钻井技术现状和发展趋势[J].石油钻探技术,2005,33(5):1-5. Zeng Yijin,Liu Jianli.Technical status and developmental trend of drilling techniques in deep and ultra-deep wells[J].Petroleum Drilling Techniques,2005,33(5):1-5.
    [2] 李根生,窦亮彬,田守嶒,等.酸性气体侵入井筒瞬态流动规律研究[J].石油钻探技术,2013,41(4):8-14. Li Gensheng,Dou Liangbin,Tian Shouceng,et al.Characteristics of wellbore transient flow during sour gas influx[J].Petroleum Drilling Techniques,2013,41(4):8-14.
    [3] 吴晓东,王庆,何岩峰.考虑相态变化的注CO2井井筒温度压力场耦合计算模型[J].中国石油大学学报:自然科学版,2009,33(1):73-77. Wu Xiaodong,Wang Qing,He Yanfeng.Temperature-pressure field coupling calculation model considering phase behavior change in CO2 injection well borehole[J].Journal of China University of Petroleum:Edition of Natural Science,2009,33(1):73-77.
    [4] 宋洵成,韦龙贵,何连,等.气液两相流循环温度和压力预测耦合模型[J].石油钻采工艺,2012,34(6):5-9. Song Xuncheng,Wei Longgui,He Lian,et al.A coupled model for wellbore temperature and pressure prediction of gas-liquid drilling fluid[J].Oil Drilling Production Technology,2012,34(6):5-9.
    [5] 陈林,孙雷,彭彩珍,等.注CO2井筒温度场分布规律模拟研究[J].断块油气田,2009,16(6):82-84. Chen Lin,Sun Lei,Peng Caizhen,et al.Simulation of temperature field for CO2 injection well bore[J].Fault-Block Oil Gas Field,2009,16(6):82-84.
    [6]

    Hasan A R,Kabir C S,Wang Xiaowei.Wellbore two-phase flow and heat transfer during transient testing[J].SPE Journal,1998,3(2):174-180.

    [7]

    Izgec B,Kabir C S,Zhu D,et al.Transient fluid and heat flow modeling in coupled wellbore/reservoir systems[J].SPE Reservoir Evaluation Engineering,2007,10(3):294-301.

    [8]

    Caetano E F,Shoham O,Brill J P.Upward vertical two-phase flow through an annulus:part 2:modeling bubble,slug,and annular flow[J].Journal of Energy Resources Technology,1992,114(1):14-30.

    [9]

    Hasan A R,Kabir C S.A study of multiphase flow behavior in vertical wells[J].SPE Production Engineering,1988,3(2):263-272.

    [10]

    Lage A C V M,Time R W.Mechanistic model for upward two-phase flow in annuli[R].SPE 63127,2000.

    [11]

    Perez-Tellez C,Smith J R,Edwards J K.A new comprehensive,mechanistic model for underbalanced drilling improves wellbore pressure predictions[J].SPE Drilling Completion,2003,18(3):199-208.

    [12]

    Gao Changhong.Empirical heat transfer model for slug flow and bubble flow in vertical subsea pipes[R].SPE 85651,2003.

    [13]

    Tang C C.A study of heat transfer in non-boiling two-phase gas-liquid flow in pipes for horizontal,slightly inclined,and vertical orientations[D].Stillwater:Oklahoma State University,2011.

    [14]

    Lee A L,Gonzalez M H,Eakin B E.The viscosity of natural gases[J].Journal of Petroleum Technology,1966,18(8):997-1000.

    [15]

    Friend D G,Roder H M.The thermal conductivity surface for mixtures of methane and ethane[J].International Journal of Thermophysics,1987,8(1):13-26.

    [16]

    Adewale Kareem Lateef,James Omeke.Specific heat capacity of natural gas;expressed as a function of its specific gravity and temperature[R].SPE 150808,2011.

    [17]

    Sutton R P.An improved model for water-hydrocarbon surface tension at reservoir conditions[R].SPE 124968,2009.

    [18]

    McMordie W C Jr,Bland R G,Hauser J M.Effect of temperature and pressure on the density of drilling fluids[R].SPE 11114,1982.

    [19] 李相方,管丛笑,隋秀香,等.环形井眼气液两相流流动规律研究[J].水动力学研究与进展:A辑,1998,13(4):422-429. Li Xiangfang,Guan Congxiao,Sui Xiuxiang,et al.Circular hole flow law of gas liquid two phase flow study[J].Journal of Hydrodynamics:A Serial,1998,13(4):422-429.
    [20] 李梦博,柳贡慧,李军,等.考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J].石油钻探技术,2014,42(5):74-79. Li Mengbo,Liu Gonghui,Li Jun,et al.Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J].Petroleum Drilling Techniques,2014,42(5):74-79.
    [21] 何淼,柳贡慧,李军,等.气侵期间岩屑运移规律研究[J].科学技术与工程,2014,14(16):27-31. He Miao,Liu Gonghui,Li Jun,et al.The research of cuttings migration during gas invasion[J].Science Technology and Engineering,2014,14(16):27-31.
  • 期刊类型引用(23)

    1. 王江帅,任茜钰,邓嵩,汪海阁,崔猛,徐守坤,徐明华,李军,殷文. 基于井筒-地层置换效应的页岩油钻井环空流体温度分布. 中国石油大学学报(自然科学版). 2024(03): 84-90 . 百度学术
    2. 徐宝昌,张学智,王雅欣,刘伟,孟卓然. 用于两相流环空压力预测的自适应物理信息神经网络模型. 石油学报. 2023(03): 545-555 . 百度学术
    3. 廖星奥,李军,杨宏伟,柳贡慧,刘伟,李牧,廖茂林. 井筒温压场下微型测量器运移模型及校正研究. 石油机械. 2023(06): 27-35 . 百度学术
    4. 柳鹤,于国伟,于琛,郑锋,陈文博,王超,郑双进. 基于地面降温的井下钻井液冷却技术. 钻井液与完井液. 2023(06): 756-764 . 百度学术
    5. 刘争,孙宝江,王志远,陈龙桥,王鄂川,陈立涛,王金堂. 海域天然气水合物降压开采压力控制及气液流动特性. 石油学报. 2022(08): 1173-1184 . 百度学术
    6. 夏顺雷,李军,柳贡慧,杨宏伟,罗鸣,李文拓. 基于无迹卡尔曼滤波的井筒压力实时校正模型. 石油机械. 2022(09): 10-18 . 百度学术
    7. 王江帅,付盼,胡旭辉,宫臣兴,邓嵩,唐政,殷文. 海洋双层管双梯度钻井井筒温度分布规律研究. 石油机械. 2022(12): 51-57 . 百度学术
    8. 刘源泂,史晋铭,马国军,程小军. 基于CFD的钢渣风淬工艺参数分析与设计. 炼钢. 2021(04): 74-80 . 百度学术
    9. 阮彪,黄鸿,徐新纽,甘仁忠,张伟,杨虎. 超高密度油基钻井液井筒循环温度场模型研究. 石油机械. 2021(11): 10-16 . 百度学术
    10. 王江帅,李军,柳贡慧,杨宏伟,郝希宁,何玉发,周云健. 考虑温度和回压影响的控压钻井参数设计方法. 石油机械. 2021(12): 10-16 . 百度学术
    11. 王江帅,李军,柳贡慧,陈安明,骆奎栋,黄涛,汪伟. 变压力梯度下钻井环空压力预测. 石油学报. 2020(04): 497-504 . 百度学术
    12. 邢星,吴玉杰,张闯,荣光来,李阳洁. 超深水平井钻井水力参数优选. 断块油气田. 2020(03): 381-385 . 百度学术
    13. 刘书杰,任美鹏,李军,张兴全,吴怡,杨宏伟. 我国海洋控压钻井技术适应性分析. 中国海上油气. 2020(05): 129-136 . 百度学术
    14. 于喜伟,孟大伟,李琼. 正压型防爆电机吹扫过程多组分瞬态浓度场分析. 电机与控制学报. 2019(04): 49-55 . 百度学术
    15. 杨宏伟,李军,柳贡慧,高旭,王江帅,骆奎栋. 多梯度钻井动态控制参数优化设计. 中国石油大学学报(自然科学版). 2019(03): 73-79 . 百度学术
    16. 徐剑乔. 基于FLUENT的排水深隧入流竖井三维湍流仿真. 中国给水排水. 2019(21): 125-131 . 百度学术
    17. 吴雪婷,邹韵,陆彦颖,赵增义,周城汉. 漏失循环条件下井筒温度预测与漏层位置判断. 石油钻探技术. 2019(06): 54-59 . 本站查看
    18. 王江帅,李军,柳贡慧,杨宏伟,王超,宋学锋. 循环钻进过程中井筒温度场新模型. 断块油气田. 2018(02): 240-243 . 百度学术
    19. 王克林,刘洪涛,程红伟,张雪松,王艳,周鹏遥. 存在岩屑床的水平环空钻井液紊流CFD模拟. 断块油气田. 2017(01): 116-119 . 百度学术
    20. 王博,王东,靳锁宝,张华涛,马力. 苏里格南区气井速度管柱适用条件分析. 断块油气田. 2017(02): 264-268 . 百度学术
    21. 罗金刚,何玲,王仁伟. 基于动网格的固液多相流灌装的数值模拟. 机械工程师. 2016(01): 21-22 . 百度学术
    22. 赵向阳,孟英峰,侯绪田,杨顺辉,鲍洪志,李皋. 沥青质稠油与钻井液重力置换规律与控制技术. 石油钻采工艺. 2016(05): 622-627 . 百度学术
    23. 孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 . 本站查看

    其他类型引用(28)

计量
  • 文章访问数:  3878
  • HTML全文浏览量:  90
  • PDF下载量:  4328
  • 被引次数: 51
出版历程
  • 收稿日期:  2014-07-09
  • 修回日期:  2014-11-26
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回