基于线源的套后储层监测系统与影响规律研究

郝希宁, 李中, 党博, 王宇, 盛磊祥, 李梦博

郝希宁,李中,党博,等. 基于线源的套后储层监测系统与影响规律研究[J]. 石油钻探技术,2025,53(0):1−6.
引用本文: 郝希宁,李中,党博,等. 基于线源的套后储层监测系统与影响规律研究[J]. 石油钻探技术,2025,53(0):1−6.
HAO Xining, LI Zhong, DANG Bo, et al. Research on the Monitoring System and Influence Law of Post casing Reservoir based on line source[J]. Petroleum Drilling Techniques, 2025, 53(0):1−6.
Citation: HAO Xining, LI Zhong, DANG Bo, et al. Research on the Monitoring System and Influence Law of Post casing Reservoir based on line source[J]. Petroleum Drilling Techniques, 2025, 53(0):1−6.

基于线源的套后储层监测系统与影响规律研究

基金项目: 国家重点研发计划“多气合采复杂结构井钻井技术及装备”(项目编号2021YFC2800904)、中海石油(中国)有限公司科技项目“海上油气井在线监控关键技术研究(编号:2021-YXKJ-007)”部分研究成果。
详细信息
    作者简介:

    郝希宁(1983—),男,安徽怀宁人,2005年毕业于中国石油大学(华东)过程装备与控制工程专业,2010年获中国石油大学(北京)油气井工程专业博士学位,高级工程师,主要从事钻完井技术及装备相关的研究工作。email:haoxn@cnooc.com.cn

  • 中图分类号: TP23

Research on the Monitoring System and Influence Law of Post casing Reservoir based on line source

  • 摘要:

    为实现油水界面等储层参数的实时监测和井筒生产的在线精确控制,基于瞬变电磁理论,建立了基于线源的套后储层监测系统,通过数值模拟仿真,分析套后储层监测系统基本特性和不同因素对线源套后储层探测性能的影响规律。仿真结果表明,将套管作为线源可施加更大的电流,二次场信号强度与线源电流呈正相关;线源适宜发射长度在300 m左右,套管壁厚越大,电场响应幅值越高。研究结果表明,基于线源的套后储层监测系统在15 m范围内有较好的油水界面识别能力,可为油气井在线监控和稳油控水提供有效的技术手段。

    Abstract:

    In order to achieve real-time monitoring of reservoir parameters such as oil-water interface and online precise control of wellbore production, a post casing reservoir monitor system was researched. Based on transient electromagnetic theory, a post casing reservoir detection model based on line sources was established. Through numerical simulation, the basic characteristics of the post casing reservoir monitoring system and the influence of different factors on the detection performance of the post casing reservoir of line sources are analyzed. The simulation results show that using the bushing as a line source can apply a greater current, and the strength of the secondary field signal is positively correlated with the line source current; The suitable emission length of the line source is around 300 m; The larger the wall thickness of the casing, the higher the amplitude of the electric field response.The post casing reservoir monitoring system based on line source has good oil water interface recognition ability within a range of 15 m, which can provide effective technical means for online monitoring and stable oil and water control of oil and gas wells.

  • 图  1   基于线源的套后储层监测系统

    Figure  1.   Post-casing reservoir detection model based on line source

    图  2   COMSOL中三维线源模型

    Figure  2.   Three dimensional line source model in COMSOL

    图  3   基于线源发射的水油界面剖分模型

    Figure  3.   Water oil interface dissection model based on line source emission

    图  4   线源发射磁场分布图

    Figure  4.   Distribution of magnetic field emitted by line source

    图  5   线源电流与磁场强度的对应关系

    Figure  5.   Corresponding relationship between line source current and magnetic field strength

    图  6   不同线源长度下对应的Ex

    Figure  6.   Corresponding Ex for different line source lengths

    图  7   套管厚度与电场强度的对应关系

    Figure  7.   Correspondence between casing thickness and electric field strength

    图  8   水油界面移动与观测值的对应关系

    Figure  8.   Correspondence between water oil interface movement and observed values

    图  9   精细化处理后不同方法信号强度对比图

    Figure  9.   Comparison of signal strength between different methods after fine processing

  • [1] 贾德利,刘合,张吉群,等. 大数据驱动下的老油田精细注水优化方法[J]. 石油勘探与开发,2020,47(3):629–636. doi: 10.11698/PED.2020.03.19

    JIA Deli, LIU He, ZHANG Jiqun, et al. Data-driven optimization for fine water injection in a mature oil field[J]. Petroleum Exploration and Development, 2020, 47(3): 629–636. doi: 10.11698/PED.2020.03.19

    [2] 王静,杨彬. 精细注水在渤海某油田J区的应用研究[J]. 承德石油高等专科学校学报,2023,25(2):11–16. doi: 10.3969/j.issn.1008-9446.2023.02.004

    WANG Jing, YANG Bin. Application of fine water injection in block J of an oilfield in bohai sea[J]. Journal of Chengde Petroleum College, 2023, 25(2): 11–16. doi: 10.3969/j.issn.1008-9446.2023.02.004

    [3] 孙福街,徐文江,姜维东,等. 中国海油低渗及非常规油气藏储层改造技术进展及展望[J]. 中国海上油气,2024,36(1):109–116.

    SUN Fujie, XU Wenjiang, JIANG Weidong, et al. Progress and prospects of CNOOC’s low permeability and unconventional oil and gas reservoir stimulation technologies[J]. China Offshore Oil and Gas, 2024, 36(1): 109–116.

    [4] 吴飞鹏,李娜,孙德旭,等. 脉动水驱孔隙压力传输规律数学模型[J]. 中国石油大学学报(自然科学版),2022,46(4):94–101. doi: 10.3969/j.issn.1673-5005.2022.04.011

    WU Feipeng, LI Na, SUN Dexu, et al. Mathematical model of pore pressure transmission law in pulsating water flooding[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(4): 94–101. doi: 10.3969/j.issn.1673-5005.2022.04.011

    [5] 刘会锋,贾婉婷,崔龙连,等. 考虑储层非均质性的限流筛管完井设计及应用[J]. 石油机械,2023,51(4):97–104.

    LIU Huifeng, JIA Wanting, CUI Longlian, et al. Design and application of limited entry liner completion considering reservoir heterogeneity[J]. China Petroleum Machinery, 2023, 51(4): 97–104.

    [6] 邵晓岩,杨学武,孟令为,等. W油田C6低渗透油藏水驱后储层特征变化规律[J]. 特种油气藏,2022,29(5):107–112. doi: 10.3969/j.issn.1006-6535.2022.05.015

    SHAO Xiaoyan, YANG Xuewu, MENG Lingwei, et al. Change law of reservoir characteristics after water flooding of C6 low permeability reservoir in W Oilfield[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 107–112. doi: 10.3969/j.issn.1006-6535.2022.05.015

    [7] 石立华,师调调,廖志昊,等. 低渗致密砂岩油藏水驱储层变化规律[J]. 特种油气藏,2024,31(3):106–115. doi: 10.3969/j.issn.1006-6535.2024.03.014

    SHI Lihua, SHI Diaodiao, LIAO Zhihao, et al. The variation law of water flooding reservoir in low permeability tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 106–115. doi: 10.3969/j.issn.1006-6535.2024.03.014

    [8] 骆晨,刘慧卿,柏宗宪,等. 低渗透油藏空气驱氧化特征及驱油效果评价[J]. 特种油气藏,2024,31(4):109–117. doi: 10.3969/j.issn.1006-6535.2024.04.014

    LUO Chen, LIU Huiqing, BAI Zongxian, et al. Oxidation characteristics and oil displacement effect evaluation of air flooding in low permeability reservoirs[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 109–117. doi: 10.3969/j.issn.1006-6535.2024.04.014

    [9] 张岩,冯海顺,翟勇,等. 低渗透稠油油藏CO2压驱提高采收率机理及规律研究[J]. 石油钻探技术,2024,52(6):97–106. doi: 10.11911/syztjs.2024070

    ZHANG Yan, FENG Haishun, ZHAI Yong, et al. Mechanism and law of CO2 pressure flooding in enhancing oil recovery in low-permeability heavy oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(6): 97–106. doi: 10.11911/syztjs.2024070

    [10] 薄其众,戴涛,杨勇,等. 胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究[J]. 石油钻探技术,2016,44(6):93–98.

    BO Qizhong, DAI Tao, YANG Yong, et al. Research on the changes in formation pressure performance of CO2 flooding in the ultra-low permeability oil reservoir: Block Fan 142 of the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 93–98.

    [11] 毕昕瑶. 双示踪组合测井技术在G45-16C井区的应用分析[J]. 石油管材与仪器,2018,4(3):62–65.

    BI Xinyao. Application effect analysis of double tracer combination logging technology in G45-16 C Well area[J]. Petroleum Instruments, 2018, 4(3): 62–65.

    [12]

    PARDO D, MATUSZYK P J, PUZYREV V, et al. Chapter 3-Modeling of resistivity geophysical measurements[M]//PARDO D, MATUSZYK P J, PUZYREV V, et al. Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods. Amsterdam: Elsevier, 2021: 77-113.

    [13]

    DAVLATSHOEV S K. Evaluation of the quality of strengthening cementation of an enclosing sandstone massif under tensile stresses[J]. Power Technology and Engineering, 2022, 56(1): 46–51. doi: 10.1007/s10749-023-01469-0

    [14]

    FAN Jilin, ZHANG Feng, TIAN Lili, et al. A method of monitoring gas saturation in carbon dioxide injection heavy oil reservoirs by pulsed neutron logging technology[J]. Petroleum Exploration and Development, 2021, 48(6): 1420–1429. doi: 10.1016/S1876-3804(21)60298-7

    [15] 孙歧峰,倪虹升,岳喜洲,等. 基于深度残差网络的随钻方位电磁波电阻率测井反演方法[J]. 石油钻探技术,2024,52(5):97–104.

    SUN Qifeng, NI Hongsheng, YUE Xizhou, et al. Inversion of azimuthal electromagnetic wave resistivity LWD based on deep residual network[J]. Petroleum Drilling Techniques, 2024, 52(5): 97–104.

    [16] 秦文娟,康正明,张意,等. 模块化随钻电磁波测井仪器结构对测量信号的影响[J]. 石油钻探技术,2024,52(3):137–145. doi: 10.11911/syztjs.2023101

    QIN Wenjuan, KANG Zhengming, ZHANG Yi, et al. Influence of structure of modular electromagnetic logging while drilling instrument on measurement signals[J]. Petroleum Drilling Techniques, 2024, 52(3): 137–145. doi: 10.11911/syztjs.2023101

    [17] 许孝凯,赵伟娜,张晋言,等. 三轴各向异性层状介质磁偶极子源电磁场递推算法及应用[J]. 石油钻探技术,2024,52(1):130–139. doi: 10.11911/syztjs.2023117

    XU Xiaokai, ZHAO Weina, ZHANG Jinyan, et al. Recursive algorithm for electromagnetic fields from magnetic dipole in layered triaxial anisotropic medium and its application[J]. Petroleum Drilling Techniques, 2024, 52(1): 130–139. doi: 10.11911/syztjs.2023117

    [18] 刘鹏程,沈建国,沈永进. 瞬变电磁测井的过套管地层电导率探测[J]. 石油物探,2020,59(4):655–664. doi: 10.3969/j.issn.1000-1441.2020.04.016

    LIU Pengcheng, SHEN Jianguo, SHEN Yongjin. Measuring formation conductivity by transient electromagnetic logging through casing[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 655–664. doi: 10.3969/j.issn.1000-1441.2020.04.016

    [19] 刘思慧,臧德福,张守伟,等. 瞬变电磁法过套管电阻率测井技术综述[J]. 地球物理学进展,2018,33(3):1088–1094. doi: 10.6038/pg2018BB0197

    LIU Sihui, ZANG Defu, ZHANG Shouwei, et al. Review of the technology of transient electromagnetic resistivity logging through casing[J]. Progress in Geophysics, 2018, 33(3): 1088–1094. doi: 10.6038/pg2018BB0197

    [20] 党瑞荣,刘丹,贾惠芹,等. 基于线源的三维地电响应模型分析与仿真[J]. 电气应用,2014,33(5):54–58.

    DANG Ruirong, LIU Dan, JIA Huiqin, et al. Analysis and simulation of three-dimensional geoelectric response model based on line source[J]. Electrotechnical Application, 2014, 33(5): 54–58.

    [21] 康正明,秦浩杰,张意,等. 基于LSTM神经网络的随钻方位电磁波测井数据反演[J]. 石油钻探技术,2023,51(2):116–124. doi: 10.11911/syztjs.2023047

    KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116–124. doi: 10.11911/syztjs.2023047

    [22] 郭晨,陈晓亮. 各向异性地层有限长线源电磁场响应研究[J]. 物探化探计算技术,2019,41(5):631–638. doi: 10.3969/j.issn.1001-1749.2019.05.11

    GUO Chen, CHEN Xiaoliang. Electromagnetic field response of finite length line source in anisotropic formation[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(5): 631–638. doi: 10.3969/j.issn.1001-1749.2019.05.11

    [23] 李亭亭,王佳,朱凯光. 井地电磁法勘探深度研究[J]. 地球物理学进展,2013,28(1):373–379. doi: 10.6038/pg20130141

    LI Tingting, WANG Jia, ZHU Kaiguang. Research on the exploration depth of the borehole-surface electromagnetic field[J]. Progress in Geophysics, 2013, 28(1): 373–379. doi: 10.6038/pg20130141

  • 期刊类型引用(22)

    1. 佘朝毅. 四川盆地深层页岩气钻井关键技术新进展及发展展望. 天然气工业. 2024(03): 1-9 . 百度学术
    2. 路智勇,刘莉,姜宇玲,张谦,湛小红,肖佳林. 涪陵气田立体开发地质工程一体化实践. 中国石油勘探. 2024(03): 10-20 . 百度学术
    3. 王能,邹亚平,田秀明. 工程地质一体化在宁XX-3井的应用. 西部探矿工程. 2023(01): 79-81 . 百度学术
    4. 王维,韩金良,王玉斌,杨干,苗强,辛江,李猛. 大宁-吉县区块深层煤岩气水平井钻井技术. 石油机械. 2023(11): 70-78 . 百度学术
    5. 付强. 四川盆地页岩气超长水平段水平井钻井实践与认识. 钻采工艺. 2022(04): 9-18 . 百度学术
    6. 张益,卜向前,齐银,杨永智,陈亚舟,侯晓云,王瑞,张斌,同松. 鄂尔多斯盆地姬塬油田长7段页岩油藏地质工程一体化油藏开发对策——以安83井区为例. 中国石油勘探. 2022(05): 116-129 . 百度学术
    7. 陈更生,吴建发,刘勇,黄浩勇,赵圣贤,常程,钟成旭. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术. 天然气工业. 2021(01): 72-82 . 百度学术
    8. 陆自清. 基于卡尔曼滤波的动态地质模型导向方法. 石油钻探技术. 2021(01): 113-120 . 本站查看
    9. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 . 百度学术
    10. 陈四平,谭判,石文睿,赵红燕. 涪陵页岩气优质储层测井综合评价方法. 石油钻探技术. 2020(04): 131-138 . 本站查看
    11. 张合文,崔明月,张宝瑞,赫安乐,晏军,梁冲,郭双根,贾洪革,马良. 低渗透薄层难动用边际油藏地质工程一体化技术——以滨里海盆地Zanazour油田为例. 中国石油勘探. 2019(02): 203-209 . 百度学术
    12. 郑述权,谢祥锋,罗良仪,景洋,唐梦,杨瑞帆,钟广荣,王军,陈正云. 四川盆地深层页岩气水平井优快钻井技术——以泸203井为例. 天然气工业. 2019(07): 88-93 . 百度学术
    13. 岳砚华,伍贤柱,张庆,赵晗,姜巍. 川渝地区页岩气勘探开发工程技术集成与规模化应用. 天然气工业. 2018(02): 74-82 . 百度学术
    14. 屈华业. 外围油田钻井地质分层设计方法研究. 西部探矿工程. 2018(08): 53-54+56 . 百度学术
    15. 罗鑫,张树东,王云刚,简利,张德军. 昭通页岩气示范区复杂地质条件下的地质导向技术. 钻采工艺. 2018(03): 29-32+6-7 . 百度学术
    16. 吴宝玉,夏宏泉,阳大祥,王孝忠,王勇. 多学科结合地质导向技术在川东复杂地层中的应用. 国外测井技术. 2018(04): 8-11 . 百度学术
    17. 郑杰. 四川盆地长宁地区页岩气井压裂效果影响因素分析及对策研究. 重庆科技学院学报(自然科学版). 2017(03): 1-6 . 百度学术
    18. 顾林元. 页岩气水平井轨迹导向物探技术方法. 江汉石油科技. 2017(02): 40-43 . 百度学术
    19. 章敬,罗兆,徐明强,江洪,陈仙江,王腾飞,罗洪. 新疆油田致密油地质工程一体化实践与思考. 中国石油勘探. 2017(01): 12-20 . 百度学术
    20. 王昕,杨斌,王瑞. 吐哈油田低饱和度油藏地质工程一体化效益勘探实践. 中国石油勘探. 2017(01): 38-45 . 百度学术
    21. 吴宗国,梁兴,董健毅,李兆丰,张朝,王高成,高阳,李峋. 三维地质导向在地质工程一体化实践中的应用. 中国石油勘探. 2017(01): 89-98 . 百度学术
    22. 杨远,何幼斌,罗进雄. 基于复合数学模型的致密油地质工程一体化开采理念与路线. 中外能源. 2017(07): 27-35 . 百度学术

    其他类型引用(12)

图(9)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  9
  • PDF下载量:  7
  • 被引次数: 34
出版历程
  • 收稿日期:  2024-05-09
  • 录用日期:  2025-02-03
  • 网络出版日期:  2025-02-09

目录

    /

    返回文章
    返回