超低温液氮辅助CO2吞吐提高页岩渗流能力试验研究

万涛, 王波, 王伟, 康振, 刁广智, 王斌

万涛,王波,王伟,等. 超低温液氮辅助CO2吞吐提高页岩渗流能力试验研究[J]. 石油钻探技术,2025,53(0):1−8.
引用本文: 万涛,王波,王伟,等. 超低温液氮辅助CO2吞吐提高页岩渗流能力试验研究[J]. 石油钻探技术,2025,53(0):1−8.
WAN Tao, WANG Bo, WANG Wei, et al. Experimental study on improving permeability of shale by CO2 flooding assisted by ultra-low temperature liquid nitrogen[J]. Petroleum Drilling Techniques, 2025, 53(0):1−8.
Citation: WAN Tao, WANG Bo, WANG Wei, et al. Experimental study on improving permeability of shale by CO2 flooding assisted by ultra-low temperature liquid nitrogen[J]. Petroleum Drilling Techniques, 2025, 53(0):1−8.

超低温液氮辅助CO2吞吐提高页岩渗流能力试验研究

基金项目: 国家科技重大专项(2016ZX05050)“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”资助。
详细信息
    作者简介:

    万涛(1987—),男,重庆忠县人,2011年毕业于重庆科技大学石油工程专业,2011年获重庆科技大学石油工程专业学士学位,工程师,主要从事油田开发方面的研究工作。E-mail:2326169049@qq.com

    通讯作者:

    王斌(1973—),男,E-mail:wangbingktkf@163.com

  • 中图分类号: TE348

Experimental study on improving permeability of shale by CO2 flooding assisted by ultra-low temperature liquid nitrogen

  • 摘要:

    页岩储集层岩石致密、孔喉细小、渗透率极低,了解页岩渗流机理是提高页岩油气采收率的关键。为此,开展页岩岩心液氮(LN2)低温处理试验和循环注CO2吞吐试验,分析液氮低温处理后不同注气压力循环注气吞吐对页岩油采收率、岩心物性和油气两相相对渗透率的影响,明确处理前后微观孔隙结构的变化特征。试验结果表明,LN2注入后页岩可产生313.5 MPa热应力,诱导微裂缝形成。LN2汽化体积膨胀作用和循环注CO2吞吐能够在微裂缝形成后在岩心中形成再加压机制,扩展诱导裂缝,提高渗流能力。CO2吞吐采收率与注入压力成正比,超临界态CO2首轮和3轮累计吞吐采收率比亚临界态CO2高32.4%和34.9%,提高幅度达154.6%和101.7%。高压注CO2所需的吞吐次数减少,产出油量主要来源于前2轮吞吐。与初始页岩岩心相比,超临界态CO2循环吞吐后平均孔径增大幅度为176%,最大油、气相对渗透率分别提高了1.8倍和2.3倍。研究成果对页岩油气增产具有一定参考意义。

    Abstract:

    Shale reservoir has tight rock, small pore throat and very low permeability. How to enhance the permeability of shale is the key to improving the recovery rate of shale oil and gas. Through conducting liquid nitrogen (LN2) low-temperature treatment experiments on shale cores and cyclic injection of CO2 flooding experiments, the effects of cyclic gas injection at different injection pressures after LN2 low-temperature treatment on the recovery rate of shale oil, core physical properties, and relative permeability of oil and gas phases were studied, and the changes in the microscopic pore structure before and after the treatment were clarified. The experimental results show that after LN2 injection, the shale can generate a thermal stress of 313.5 MPa, inducing the formation of micro-fractures. The volume expansion effect of LN2 vaporization and cyclic CO2 flooding can form a re-pressurization mechanism in the core after the formation of micro-fractures, expanding the induced fractures and improving the permeability. The recovery rate of CO2 flooding is proportional to the injection pressure. The cumulative recovery rates of the first and third rounds of supercritical CO2 flooding are 32.4% and 34.9% higher than those of subcritical CO2, with an increase of 154.6% and 101.7%, respectively. The number of required flooding cycles for high-pressure CO2 injection is reduced, and the produced oil mainly comes from the first two rounds of flooding. Compared with the initial shale core, the porosity after supercritical CO2 cyclic flooding increases by 78.6%, the permeability increases by 27,204%, the average pore diameter increases by 176%, and the maximum relative permeability of oil and gas increases by 1.8 times and 2.3 times, respectively. The research results provide a reference for the production increase of shale oil and gas.

  • 图  1   岩心试验仪器

    Figure  1.   Flow chart of core experimental instruments

    图  2   试验页岩样品矿物组成及含量

    Figure  2.   Mineral composition and content of experimental shale samples

    图  3   LN2低温处理过程中岩心温度随时间的变化

    Figure  3.   Changes in core temperature over time during LN2 low-temperature treatment

    图  4   未处理岩心和LN2低温处理后CO2吞吐采收率对比

    Figure  4.   Comparison of CO2 huff and puff recovery after untreated core and LN2 low-temperature treatment

    图  5   LN2低温处理后岩心在不同注气压力下吞吐采收率对比

    Figure  5.   Comparison of recovery efficiency of LN2 low-temperature treated core under different gas injection pressures through huff and puff

    图  6   初始岩心与LN2低温处理和CO2吞吐后的岩心孔隙度和渗透率变化

    Figure  6.   Changes in porosity and permeability of initial core after LN2 low-temperature treatment and CO2 huff and puff

    图  7   3种不同注入压力吞吐后页岩渗透率随上覆压力的变化

    Figure  7.   Changes in shale permeability with overlying pressure after three different injection pressures of huff and puff

    图  8   初始页岩与LN2低温处理和循环注气后T2谱分布

    Figure  8.   T2 spectrum distribution after initial shale and LN2 low-temperature treatment and cyclic gas injection

    图  9   初始岩心和LN2低温处理和循环注气后岩心3端面CT扫描图像

    Figure  9.   Initial core and LN2 low-temperature treatment and CT scan images of core 3 end face after cyclic gas injection

    图  10   处理前后页岩油气两相相对渗透率曲线的变化

    Figure  10.   Change of Relative permeability curve of Shale oil and gas phases before and after treatment

    表  1   试验页岩岩心基本参数

    Table  1   Basic parameters of experimental shale core

    岩心编号 直径/mm 长度/mm 孔隙度,% 渗透率/10−3 mD TOC,% 镜质体反射率,% 试验设计
    1 38.25 51.75 7.32 0.45 2.11 1.15 LN2低温处理+4 MPa循环注CO2吞吐
    2 38.14 54.21 7.47 0.37 2.83 1.21 LN2低温处理+7 MPa循环注CO2吞吐
    3 38.16 52.42 6.74 0.24 3.03 1.18 LN2低温处理+10 MPa循环注CO2吞吐
    4 38.11 51.56 7.21 0.33 2.81 1.07 10 MPa循环注CO2吞吐(对比试验)
    下载: 导出CSV

    表  2   低温处理中形成的热应力及计算参数

    Table  2   Thermal stress and calculation parameters formed during low-temperature treatment

    岩心编号 E/103 MPa ν α/10−6−1 Ti/℃ Ts/℃ σthermal/MPa
    1 61.0 0.296 15 78.5 −177.3 303.3
    2 56.4 0.284 15 78.5 −181.1 281.9
    3 70.3 0.311 15 78.5 −178.6 355.5
    下载: 导出CSV

    表  3   不同注气压力下页岩处理前后孔径参数变化

    Table  3   Changes in pore size parameters before and after shale treatment under different gas injection pressures

    孔隙结构参数平均弛豫
    时间/ms
    平均孔径/nm最大弛豫
    时间/ms
    最大孔径/nm
    岩心1处理前0.632.776326
    岩心1处理后0.964.15642425
    岩心3处理前0.482.1151649
    岩心3处理后1.365.89824222
    下载: 导出CSV
  • [1] 路千里,张航,郭建春,等. 基于相场法的水力裂缝扩展模拟技术现状及展望[J]. 天然气工业,2023,43(3):59–68. doi: 10.3787/j.issn.1000-0976.2023.03.006

    LU Qianli, ZHANG Hang, GUO Jianchun, et al. Status and prospect of hydraulic fracture propagation simulation based on phase field method[J]. Natural Gas Industry, 2023, 43(3): 59–68. doi: 10.3787/j.issn.1000-0976.2023.03.006

    [2]

    TANG Huiying, WANG Shihao, ZHANG Ruihan, et al. Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method[J]. Journal of Petroleum Science and Engineering, 2019, 179: 378–393. doi: 10.1016/j.petrol.2019.04.050

    [3] 王小龙,高庆贤,董双福,等. 超低渗致密油藏二氧化碳吞吐合理注入参数确定[J]. 石油钻采工艺,2023,45(3):368–375.

    WANG Xiaolong, GAO Qingxian, DONG Shuangfu, et al. Determination of rational parameters for CO2 huff-n-puff in tight oil reservoirs with ultra-low permeability[J]. Oil Drilling & Production Technology, 2023, 45(3): 368–375.

    [4] 叶长青,马辉运,蔡道纲,等. 国外页岩气井人工举升增产技术研究现状与进展[J]. 石油钻采工艺,2022,44(3):328–334.

    YE Changqing, MA Huiyun, CAI Daogang, et al. Research status and progress of artificial lifting of shale gas wells abroad[J]. Oil Drilling & Production Technology, 2022, 44(3): 328–334.

    [5] 李向阳,季汉成,卞腾飞,等. 玛北斜坡百口泉组致密砾岩水力压裂裂缝表征[J]. 新疆石油地质,2023,44(2):178–183.

    LI Xiangyang, JI Hancheng, BIAN Tengfei, et al. Characterization of hydraulic fractures in tight conglomerate reservoirs in Baikouquan Formation, Mabei slope[J]. Xinjiang Petroleum Geology, 2023, 44(2): 178–183.

    [6] 马东东,罗宇杰,胡大伟,等. 粒径分选性与围压对砂砾岩水力压裂破裂影响机制研究[J]. 岩石力学与工程学报,2020,39(11):2264–2273.

    MA Dongdong, LUO Yujie, HU Dawei, et al. Effects of particle size sorting and confining pressure on hydraulic fracturing mechanism of glutenite rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2264–2273.

    [7] 李邦国,侯家鵾,雷兆丰,等. 超临界CO2萃取页岩油效果评价及影响因素分析[J]. 石油钻探技术,2024,52(4):94–103.

    LI Bangguo, HOU Jiakun, LEI Zhaofeng, et al. Evaluation of shale oil extraction by supercritical CO2 and analysis of influencing factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94–103.

    [8] 汤积仁,张靖,卢义玉,等. 页岩对CO2的绝对吸附量及其影响因素试验研究[J]. 煤炭学报,2020,45(8):2838–2845.

    TANG Jiren, ZHANG Jing, LU Yiyu, et al. Absolute adsorption capacity of shale on CO2 and its influencing factors[J]. Journal of China Coal Society, 2020, 45(8): 2838–2845.

    [9] 贾连超,刘鹏飞,袁丹,等. 注CO2提高页岩吸附气采收率试验——以鄂尔多斯盆地延长组长7页岩气为例[J]. 大庆石油地质与开发,2021,40(2):153–159.

    JIA Lianchao, LIU Pengfei, YUAN Dan, et al. Experiment of enhancing the recovery of the shale adsorbed gas by CO2 injection: Taking Yanchang-Formation Chang-7 shale gas in Ordos Basin as an example[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 153–159.

    [10] 张佳亮,葛洪魁,张衍君,等. 吉木萨尔页岩油注入介质梯级提采试验评价[J]. 石油钻采工艺,2023,45(2):244–250.

    ZHANG Jialiang, GE Hongkui, ZHANG Yanjun, et al. Experimental evaluation on EOR medium grading of shale in Jimusaer Oilfield[J]. Oil Drilling & Production Technology, 2023, 45(2): 244–250.

    [11]

    GRUNDMANN S R, RODVELT G D, DIALS G A, et al. Cryogenic nitrogen as a hydraulic fracturing fluid in the Devonian shale[R]. SPE 51067, 1998.

    [12] 吴壮坤,张宏录,池宇璇. 苏北页岩油二氧化碳强压质换技术[J]. 石油钻探技术,2024,52(4):87–93.

    WU Zhuangkun, ZHANG Honglu, CHI Yuxuan. CO2 high pressure quality exchange technology of shale oil in northern Jiangsu Province[J]. Petroleum Drilling Techniques, 2024, 52(4): 87–93.

    [13] 张衍君,王鲁瑀,刘娅菲,等. 页岩油储层压裂-提采一体化研究进展与面临的挑战[J]. 石油钻探技术,2024,52(1):84–95. doi: 10.11911/syztjs.2024012

    ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(1): 84–95. doi: 10.11911/syztjs.2024012

    [14]

    SIRATOVICH P A, VILLENEUVE M C, COLE J W, et al. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 265–280. doi: 10.1016/j.ijrmms.2015.09.023

    [15]

    ALQATAHNI N B, CHA Minsu, YAO Bowen, et al. Experimental investigation of cryogenic fracturing of rock specimens under true triaxial confining stresses[R]. SPE 180071, 2016.

    [16]

    KHALIL R, EMADI H. An experimental investigation of cryogenic treatments effects on porosity, permeability, and mechanical properties of Marcellus downhole core samples[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103422. doi: 10.1016/j.jngse.2020.103422

    [17]

    LI Ran, ZHANG Chengcheng, HUANG Zhongwei. Quenching and rewetting of rock in liquid nitrogen: Characterizing heat transfer and surface effects[J]. International Journal of Thermal Sciences, 2020, 148: 106161. doi: 10.1016/j.ijthermalsci.2019.106161

    [18]

    MCDANIEL B W, GRUNDMANN S R, KENDRICK W D, et al. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid[R]. SPE 38623, 1997.

    [19]

    FU Chunkai, LIU Ning. Waterless fluids in hydraulic fracturing–A review[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 214–224. doi: 10.1016/j.jngse.2019.05.001

    [20]

    CHA Minsu, ALQAHTANI N B, YAO Bowen, et al. Cryogenic fracturing of wellbores under true triaxial-confining stresses: Experimental investigation[J]. SPE Journal, 2018, 23(4): 1271–1289. doi: 10.2118/180071-PA

    [21]

    JIANG Long, CHENG Yuanfang, HAN Zhongying, et al. Experimental investigation on pore characteristics and carrying capacity of Longmaxi shale under liquid nitrogen freezing and thawing[R]. SPE 191111, 2018.

    [22]

    ALTAWATI F, EMADI H, PATHAK S. Improving oil recovery of Eagle Ford shale samples using cryogenic and cyclic gas injection methods-An experimental study[J]. Fuel, 2021, 302: 121170. doi: 10.1016/j.fuel.2021.121170

    [23]

    ENAYATPOUR S, PATZEK T. Thermal shock in reservoir rock enhances the hydraulic fracturing of gas shales[R]. URTEC 1620617, 2013.

    [24] 芦迪,张敬茹,张毅,等. 注CO2提高页岩气采收率试验研究[J]. 大连理工大学学报,2021,61(5):464–470. doi: 10.7511/dllgxb202105004

    LU Di, ZHANG Jingru, ZHANG Yi, et al. Experimental study of enhancing shale gas recovery by CO2 injection[J]. Journal of Dalian University of Technology, 2021, 61(5): 464–470. doi: 10.7511/dllgxb202105004

    [25]

    ZHOU Junping, TIAN Shifeng, ZHOU Lei, et al. Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale[J]. Energy, 2020, 191: 116574. doi: 10.1016/j.energy.2019.116574

    [26] 孟昆,王胜建,薛宗安,等. 利用核磁共振资料定量评价页岩孔隙结构[J]. 波谱学杂志,2021,38(2):215–226. doi: 10.11938/cjmr20202856

    MENG Kun, WANG Shengjian, XUE Zongan, et al. Quantitative evaluation of shale pore structure using nuclear magnetic resonance data[J]. Chinese Journal of Magnetic Resonance, 2021, 38(2): 215–226. doi: 10.11938/cjmr20202856

    [27] 郎东江,伦增珉,吕成远,等. 页岩油注二氧化碳提高采收率影响因素核磁共振试验[J]. 石油勘探与开发,2021,48(3):603–612. doi: 10.11698/PED.2021.03.15

    LANG Dongjiang, LUN Zengmin, LYU Chengyuan, et al. Nuclear magnetic resonance experimental study of CO2 injection to enhance shale oil recovery[J]. Petroleum Exploration and Development, 2021, 48(3): 603–612. doi: 10.11698/PED.2021.03.15

  • 期刊类型引用(4)

    1. 张东清,万云强,张文平,代永波,张金成,许明标. 涪陵页岩气田立体开发优快钻井技术. 石油钻探技术. 2023(02): 16-21 . 本站查看
    2. 刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 . 本站查看
    3. 周志敏,杨刚,崔建航. 顺北1区SHB5-12井周断溶体储层压裂参数设计研究. 水利与建筑工程学报. 2022(05): 109-116+130 . 百度学术
    4. 张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 . 百度学术

    其他类型引用(2)

图(10)  /  表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 6
出版历程
  • 录用日期:  2025-02-03
  • 网络出版日期:  2025-02-09

目录

    /

    返回文章
    返回