涡动钻柱内赫巴流体的流动特性研究

张晋凯, 李根生, 黄中伟, 田守嶒, 史怀忠

张晋凯, 李根生, 黄中伟, 田守嶒, 史怀忠. 涡动钻柱内赫巴流体的流动特性研究[J]. 石油钻探技术, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016
引用本文: 张晋凯, 李根生, 黄中伟, 田守嶒, 史怀忠. 涡动钻柱内赫巴流体的流动特性研究[J]. 石油钻探技术, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016
Zhang Jinkai, Li Gensheng, Huang Zhongwei, Tian Shouceng, Shi Huaizhong. Behavior of Herschel-Bulkely Fluid Flow in Whirl Drill String[J]. Petroleum Drilling Techniques, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016
Citation: Zhang Jinkai, Li Gensheng, Huang Zhongwei, Tian Shouceng, Shi Huaizhong. Behavior of Herschel-Bulkely Fluid Flow in Whirl Drill String[J]. Petroleum Drilling Techniques, 2013, 41(5): 82-88. DOI: 10.3969/j.issn.1001-0890.2013.05.016

涡动钻柱内赫巴流体的流动特性研究

基金项目: 

国家重点基础研究发展计划("973"计划)项目"深井复杂地层安全高效钻井基础研究"(编号:2010CB226704)部分研究内容。

详细信息
    作者简介:

    张晋凯(1980—),男,陕西西安人,2003年毕业于西安石油大学电气工程及自动化专业,油气井工程专业在读博士研究生,主要从事油气井流体力学与工程方面的研究。

  • 中图分类号: TE21

Behavior of Herschel-Bulkely Fluid Flow in Whirl Drill String

  • 摘要: 为了揭示钻井液在钻柱内的流动特性,采用数值模拟方法建立了涡动钻柱内赫巴流体的流动模型,结合流体力学相关理论,对比分析了速度剖面与表观黏度剖面,研究了钻柱自转速度、公转速度、轴向流速及流体密度等参数的变化对钻柱内流场的影响,得到了各参数对涡动钻柱内摩阻压耗的影响规律。研究表明,公转速度正向增大或反向减小时摩阻压耗都有减小的趋势,自转速度增大时摩阻压耗有增大的趋势。由此可见,考虑钻柱涡动的摩阻压耗变化规律,可使涡动钻柱内钻井液的描述更接近于实际钻井工况,有助于钻井液循环系统的优化。
    Abstract: In order to reveal flow behavior of drilling fluid in drill string,numerical simulation method is adopted to establish a mathematical flow model about Herschel-Bulkely fluid in whirl drill string.Combined with the theory of fluid mechanics,the model was used to analyze and compare velocity and apparent viscosity profiles.The effects of variation in drill string rotation velocity,revolution velocity,axial flow velocity and fluid density on flow field were examined,the regularity of effect with each parameter on friction pressure loss in whirl drill string was found.The study shows that friction pressure loss was reduced with the positive increase or reverse decrease of revolution speed,but friction pressure loss increased with the increase of rotation speed.Therefore,when taking friction pressure loss into account,the description of drilling fluid flow in whirl drill string will be much closer to actual drilling condition,facilitating the optimization of drilling circulation system,it can be of great significance to safe and efficient drilling.
  • [1] 史玉才,王军,朱江,等.下部钻柱反向涡动机理研究[J].石油 钻探技术,2007,35(5):43-45. Shi Yucai,Wang Jun,Zhu Jiang,et al.Research on backward whirling mechanism of bottom drillstring[J].Petroleum Drilling Techniques,2007,35(5):43-45.
    [2] 高德利.钻井科技发展的历史回顾现状分析与建议[J].石油科技论坛,2004(2):29-39. Gao Deli.Drilling technology development analysis historical review and recommendations[J].Oil Frum,2004(2):29-39.
    [3] 管志川,史玉才,夏焱,等.底部钻具组合运动状态及钻进趋势评价方法研究[J].2005,33(5):24-27. Guan Zhichuan,Shi Yucai,Xia Yan,et al.Research on motion state of bottom hole assembly and the evaluation method of drilling tendency[J].Petroleum Drilling Techniques,2005,33(5):24-27.
    [4] 高德利.油气井管柱力学与工程[M].东营:中国石油大学出版社,2006:183-188. Gao Deli.Down-hole tubular mechanics and its applications[M].Dongying:China University of Petroleum Press,2006:183-188.
    [5]

    Herschel W H,Bulkley R.Measurement of consistency as applied to rubber-benzene solutions:29th Annual Meeting of the American Society Testing Materials Atlantic City,June 1926.Proc.ASTM,26 (Ⅱ):621-633.

    [6] 胡茂焱,尹文斌,郑秀华,等.钻井液流变参数计算方法的分析及流变模式的优选[J].探矿工程:岩土钻掘工程,2004,31(7): 41-45. Hu Maoyan,Yin Wenbin,Zheng Xiuhua,et al.Analyses on calculation methods of rheological parameters of drilling fluid and optimization of rheological model[J].Exploration Engineering:Rock Soil Drilling and Tunneling,2004,31(7): 41-45.
    [7] 韩洪升,魏兆胜,崔海清,等.石油工程非牛顿流体力学[M].哈尔滨:哈尔滨工业大学出版社,1993:116-145. Han Hongsheng,Wei Zhaosheng,Cui Haiqing,et al.Non-newtonian fluid mechanics in petroleum engineering[M].Haerbin:Harbin Institute of Technology Press,1993:116-145.
    [8] 张晋凯,李根生,黄中伟,等.连续油管螺旋段摩阻压耗数值模拟[J].中国石油大学学报:自然科学版,2012,36(2):115-119. Zhang Jinkai,Li Gensheng,Huang Zhongwei,et al.Numerical simulation on friction pressure loss in helical coiled tubing[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(2):115-119.
    [9] 韩占忠,王敬,兰小平.FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005:14-16. Han Zhanzhong,Wang Jing,Lan Xiaoping.FLUENT:fluid engineering simulation and applications[M].Beijing:Beijing Institute of Technology Press,2005:14-16.
    [10] 高学平.高等流体力学[M].天津:天津大学出版社,2005:16-28. Gao Xueping.Advanced fluid mechanics[M].Tianjin:Tianjin University Press,2005:16-28.
    [11] 王福军.计算流体动力学分析:CFD 软件原理与应用[M].北京:清华大学出版社,2004:122-126. Wang Fujun.Computational fluid dynamics analysis:software principles and applications of CFD[M].Beijing:Tsinghua University Press,2004:122-126.
    [12] 汪志明,崔海清,何光渝.流体力学[M].北京:石油工业出版社,2006:126-160. Wang Zhiming,Cui Haiqing,He Guangyu.Fluid mechanics[M].Beijing:Petroleum Industry Press,2006:126-160.
    [13]

    Ito S,Ogawa K,Kuroda C.Decay process of swirling in a pipe[J].International Journal of Chemical Engineering,1979:600-605.

计量
  • 文章访问数:  3188
  • HTML全文浏览量:  91
  • PDF下载量:  3311
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-09-02
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回