Mechanism of Effect of Relative Humidity on Creep Behavior of Gypsum Rock
-
摘要: 为了弄清盐膏岩在井下环境下的蠕变规律,对盐膏岩蠕变规律影响机理进行了研究。采用调节盐溶液中含盐量的方法来控制岩样周围环境的相对湿度值,并在相对湿度为35%,65%,95%的条件下,进行围压分别为0,2,5 MPa的三轴短期压缩试验和单轴应力为10 MPa的蠕变试验。相对湿度从35%增加到95%,盐膏岩岩样强度由38.2 MPa降至35.2 MPa;弹性模量和泊松比变化量小。相对湿度为95%时,盐膏岩岩样产生负向的体积应变(膨胀);相对湿度为35%时,盐膏岩岩样产生正向体积应变(收缩)。研究结果表明,盐膏岩的强度对于相对湿度的变化不很敏感;结合Heard模型,利用蠕变激活能可以解释相对湿度对体应变速率的影响;晶体到毛细管空间的水分子相互运移的机械化学机制,可以解释相对湿度对体应变的影响。研究得到盐膏岩井下真实的蠕变规律,为盐膏层安全钻井提供了理论依据。Abstract: In order to find out the creep behavior of salt-gypsum under the down hole conditions,the mechanism affecting salt-gypsum creep was studied.By adjusting the concentration of salt in the salt solution to control the relative humidity around the rock samples,the uni-axial compression test was carried out at 10 MPa and tri-axial compression tests were carried out at confining pressures of 0,2 and 5 MPa under relative humidity of 35%,65% and 95% respectively.It was found that in a short-term test of salt-gypsum rock,the rock strength displays a downward trend from 38.2 MPa to 35.2 MPa with the increase of relative humidity from 30% to 90%,the change in Young’s modulus and Poisson’s ratio is small.When the relative humidity is 95%,the sample generates negative volumetric strain (expansion) and when the relative humidity is 35%,the sample generates positive volumetric strain (shrinkage).The study shows the strength of salt-gypsum is not highly sensitive to the change of relative humidity;and combined with the Heard model,the impact of relative humidity on the volumetric strain rate can be explained by the theory of creep activation energy;and the influence of relative humidity on the volumetric strain can be explained by the mechanical-chemical mechanisms of mutual migration of water molecules between the crystal and capillary spaces.The creep behavior of salt-gypsum rock underground revealed by the study can provide theoretical basis for safe drilling in this kind of formations.
-
-
[1] 金衍,陈勉.盐岩地层井眼缩径控制技术新方法研究[J].岩石力学与工程学报,2000,19(增刊1):1111-1114. Jin Yan,Chen Mian.A new approach for controlling tight hole in salt formation[J].Journal of Rock Mechanics and Engineering,2000,19(supplement 1):1111-1114. [2] Ge Weifeng,Chen Mian,Jin Yan,et al.Analysis of the external pressure on casings induced by salt-gypsum creep in build-up sections for horizontal wells[J].Rock Mechanics and Rock Engineering,2011,44(6):711-723.
[3] Cristescu N D.A general constitutive equation for transient and stationary creep of rock salt[J].International Journal of Rock Mechanics and Mining Science,1993,30(2):125-140.
[4] Hunsche Udo.Result and interpretation of creep experiments on rock salt:the first Conference on the Mechanical Behavior of Salt,State College,1981[C].Clausthal-Zellerfeld:Transactions of Technical Publishers.
[5] Hunsche Udo.Uniaxial and triaxial creep and failure tests on rock:experiment technique and interpretation[M].Verlag:Springer,1994.
[6] Badens E,Veesler S,Boistelle R,et al.Relation between Young’s modulus of set plaster and complete wetting of grain boundaries by water[J].Colloids and Surfaces A:Physiochemical and Engineering Aspects,1999,156(1/2/3):373-379.
[7] Coquard P,Boistelle R.Water and solvent effects on the strength of set plaster[J].International Journal of Rock Mechanics and Mining Sciences Geomechanics,1994,31(5):517-524.
[8] Kato Y,Matsui M,Umeya K,et al.Influence of surface energy on the mechanical properties of hardened gypsum[J].Gypsum Lime,1980,166:3-9.
[9] Sattler H.Elastic and plastic deformations of plaster units under uniaxial compressive stress[J].Matériaux et Construction,1974,7(3):159-168.
[10] Meille S.Correlation between mechanical behavior and microstructure of set plaster[D].INSA de Lyon,France,2001.
[11] Meille Sylvain,Sadaoui Malika,Reynaud Pascal,et al.Mechanisms of crack propagation in dry plaster[J].Journal of the European Ceramic Society,2003,23(16):3105-3112.
[12] Finot E,Lesniewska E,Mutin J C,et al.Reactivity of gypsum faces according to the relative humidity by scanning force microscopy[J].Surface Science,1997,384(1/2/3):201-217.
[13] Andrews H.The effect of water contents on the strength of calcium sulfate plaster products[J].Journal of the Society of Chemical Industry,1946,65(5):125-128.
[14] Sadaoui M,Meille S,Reynaud P,et al.Internal friction study of the influence of humidity on set plaster[J].Journal of the European Ceramic Society,2005,25(14):3281-3285.
[15] 陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008:19-30. Chen Mian,Jin Yan,Zhang Guangqing.Petroleum engineering rock mechanics[M].Beijing:Science Press,2008:19-30. [16] Kolláth B,Zoltán Juhász A.Mechanochemical capillary reactions in partly dehydrated gypsum and aluminium hydroxide interground powder mixtures[J].Cement and Concrete Research,1996,26(12):1843-1857.
-
期刊类型引用(12)
1. 马天寿,张东洋,陈颖杰,杨赟,韩雄. 基于神经网络模型的水平井破裂压力预测方法. 中南大学学报(自然科学版). 2024(01): 330-345 . 百度学术
2. 黄千玲,赵军龙,白倩,许鉴源. 基于Adaboost算法的沉积微相自动识别——以陇东气田Q区山西组为例. 地质通报. 2024(04): 658-666 . 百度学术
3. 龚宇,刘迪仁. 基于门控循环单元网络的低阻油层测井流体识别方法. 科学技术与工程. 2024(12): 4932-4941 . 百度学术
4. 苏恺明,徐耀辉,徐旺林,张月巧,白斌,李阳,严刚. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究. 地学前缘. 2024(03): 530-540 . 百度学术
5. 龚安,张恒. 基于小波变换和CNN-Transformer模型的测井储层流体识别. 西安石油大学学报(自然科学版). 2024(04): 108-116 . 百度学术
6. 高泽林,王佳琦,张启子. 智能化测井解释软件平台的架构研究. 石油钻探技术. 2024(04): 128-134 . 本站查看
7. 姜宝胜,白玉湖,徐兵祥,马晓强,王苏冉,杜旭林. 基于集成学习的致密气藏产能预测新方法. 中国海上油气. 2024(05): 120-127 . 百度学术
8. 周舟,李犇,耿宇迪,肖锐. 超深破碎型地层岩石力学参数的大数据预测模型. 石油钻探技术. 2024(05): 91-96 . 本站查看
9. 朱博含,单玄龙,衣健,石云倩,郭剑南,刘鹏程,王舒扬,李昂. 基于机器学习的火山岩识别方法及应用. 特种油气藏. 2024(05): 41-49 . 百度学术
10. 张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 . 百度学术
11. 高亚军,唐力辉,王振鹏,谢晓庆,徐海涛. 基于循环神经网络和数据差分处理的油田产量预测方法. 中国海上油气. 2023(03): 126-136 . 百度学术
12. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 2522
- HTML全文浏览量: 40
- PDF下载量: 3751
- 被引次数: 19