Numerical simulation of natural gas hydrate reformation during gas recovery induced by depressurization
-
摘要:
为了解天然气水合物开采过程中二次生成水合物对产气效率和开采安全的影响,运用流体动力学和有限差分法建立了直井降压开采天然气水合物二次生成的数值模拟模型,模拟了不同降压方式下水合物二次生成区域、时空演化特征以及生成量,结果显示:水合物分解前缘和水合物层交界处是二次生成水合物的主要区域;水合物分解前缘处二次生成水合物的时间通常更早,且离井筒越近,二次生成的水合物越多;二次生成水合物的量在开采初期先减小后增大,中期略有下降后稳定,后期由于热量供应不足导致二次生成水合物的量增大。降压方式对二次生成水合物有明显的影响,逐步降压法相对一步降压法可以控制水合物分解前缘处二次生成水合物的范围并推迟二次生成水合物的时间;一步降压法二次生成水合物的量与降压幅度呈反比;逐步降压法前期二次生成水合物的量与降压幅度成反比,后期成正比。研究结果可为天然气水合物开采方式的选择提供理论依据。
Abstract:To understand the impact of gas hydrate reformation on gas production efficiency and mining safety, a numerical model for hydrate reformation in vertical wells under depressurization was established using fluid dynamics and the finite difference method. The model simulated the location, region, spatiotemporal evolution, and quantity of secondary hydrate under different depressurization strategies. Results show that the hydrate dissociation front and the boundary of hydrate layers are the primary regions of hydrate reformation. Hydrate reformation of the hydrate dissociation front is usually earlier and greater accumulation further from the wellbore. The quantity of secondary hydrate initially decreases, then stabilizes and slightly increases in the middle stage, and finally increases due to insufficient heat supply. Different depressurization modes significantly impact hydrate reformation; step-wise depressurization (SD) can control the reformation range and delay the reformation time of the hydrate dissociation front compared to one-step depressurization (OD). The reformation quality of OD is inversely proportional to the depressurization decrement. Early-stage reformation quality of SD is inversely proportional to the depressurization decrement, while later-stage is directly proportional. These findings provide a theoretical basis for optimizing natural gas hydrate exploitation strategies.
-
随着油田数字化技术不断发展,国内各油田先后开展了第四代分层注水技术攻关,实现了井下分层流量自动测调及远程监控[1-2]。大庆、华北和吉林等油田[2-3]开展了电缆通信数字分注技术研究,但由于电缆捆置于油管外部,下入作业过程较为复杂,电缆易磕碰损坏,井下长期密封性较差。长庆、胜利和冀东等油田应用无线通信数字式分注技术,可以自动调节井下配水器周期,但由于采用井下电池供电,受电池电量限制,回传测试数据量相对较少[4-8]。
针对上述技术问题,笔者结合柔性复合管连续性及耐腐蚀性[9-14],将电缆设计于柔性复合管内,研发了智能配水器、过电缆封隔器等关键工具,形成了柔性复合管预置电缆数字式分注技术,实现了全井段电缆通信与控制及分层流量实时自动测调、自动监控,解决了电缆保护与测试数据少的问题。
1. 工艺设计
柔性复合管预置电缆数字式分注管柱主要包括预置电缆柔性复合管、柔性复合管转换接头、智能配水器、油管、过电缆封隔器和井下附件等,采用过电缆封隔器将储层分开,智能配水器中集成设计流量计、电机和水嘴等自动化控制机构,完成分层流量自动测试、自动调节及远程实时监控。
1.1 预置电缆柔性复合管设计
预置电缆柔性复合管采用多层结构设计,包括内衬层、增强层、功能层、拉伸层和保护层(见图1)。内衬层为聚乙烯材质,是井内流体流动的主通道;增强层为承载层,采用聚乙烯、玻璃纤维复合材料带缠绕热熔设计,以抵抗外压和内压;拉伸层为凯夫拉纤维,提供管柱拉伸强度;功能层为通信电缆层,将电缆预置于管体内,建立实时通信通道;保护层为聚乙烯材质,其许用应变为 7.7%[15-17],可确保管柱在运输、井筒下入等作业过程中无损坏。
1.2 智能配水器
智能配水器是井下自动控制的核心工具,主要包括上接头、验封短节、控制模块、过流通道、流量计、电机、水嘴和下接头等(见图2)。智能配水器通过流量计测试分层流量,将测试结果与控制模块目标流量对比,当误差大于5%时,电机调节水嘴开度改变分层流量,实现分层动态数据监测、分层流量自动调节,使分层流量达到配注要求。
1.3 过电缆封隔器
过电缆封隔器兼具封隔地层与提供井下电缆环空通道的功能,主要包括上接头、解封机构、洗井机构、中心管、坐封胶筒、坐封机构和下接头等(见图3),管柱由多支过电缆封隔器、智能配水器连接组成,油管内打压后,封隔器胶筒坐封,封隔不同注水层段,实现不同层段注水。电缆由上接头穿入封隔器本体,穿越胶筒后,由洗井通道通过至下部坐封机构外部,最后由下接头穿出。此过程中,采用单一电缆完整穿越,密封可靠性高。
1.4 柔性复合管转换接头
柔性复合管转接头是连接柔性复合管和智能配水器的关键工具,由于柔性复合管为连续管体,不适用于丝扣连接,因此采用插接式销钉固定,使管柱机械连接、电控连接双接通,结构密封均采用两级胶圈密封,提高密封性(见图4)。柔性复合管转换接头主要包括预置电缆柔性复合管、活动接头、插头、滑环插座、防松螺钉、滑环座和穿线管等(见图5)。其中,柔性复合管的信号线与单芯插头相连,插头与滑环接插座接触;配水器信号线通过胶套导线穿过穿线管与滑环插座相连。
2. 室内测试
2.1 预置电缆柔性复合管力学性能分析
预置电缆柔性复合管需满足封隔器坐封、洗井等工艺需求,力学模拟分析表明,当管件开始爆破失效时,纤维增强层先达到破坏条件,内衬层和外保护层的最大应变尚未达到许用应变,因此,主要通过分析增强层的应力来评价其抗压性能。
2.1.1 增强层性能测试
根据横向和纵向的应力响应设计标准[15],增强层设计缠绕层为8层,开展室内测试分析不同缠绕层纵向与横向应力变化规律,纵向应力随缠绕层数增加而降低,横向应力随缠绕层数增加而增大(见图6、图7)。
2.1.2 模拟分析对比
采用有限元模拟分析爆破压力,结果如图8所示。假设预置电缆柔性复合管材料为线弹性,模拟结果远大于室内测试结果,误差最大为22.5%,模拟结果与测试值差距较大,无法表征材料的真实特性;引入材料的非线性,按照管材真实应力应变曲线进行模拟,模拟结果和测试结果具有良好的一致性,最大误差不超过6.5%,因此,预置电缆柔性复合管材料具有非线性特征。此外,随玻纤增强柔性管缠绕层数的增加,爆破压力呈线性增大,需要根据管内流体输送压力确定玻纤增强柔性管增强层层数。
2.1.3 室内测试分析
选取1.00 m长的预置电缆柔性复合管若干,分别进行静水压强度、爆破强度、抗拉伸等性能测试评价[18-20]。静水压强度测试结果表明,在50 MPa压力下稳压24 h,预置电缆柔性复合管无破裂、无渗漏,管体压降2%;爆破强度测试参照标准《流体输送用热塑性塑料管材耐内压试验方法》(GB/T 6111—2003)进行[18],测试结果表明,爆破压力为96 MPa;拉伸强度测试结果表明,拉断力为294 kN;抗外压强度测试结果表明,管柱变形外压为29 MPa。总体而言,预置电缆柔性复合管性能指标均满足井下注水管柱的设计要求,同时可保证分注井封隔器坐封压力在12~15 MPa,最大抗外压力能达到25 MPa。
2.2 智能配水器
为保证在井下高压环境中长期正常工作,监测分层流量、压力等动态数据,智能配水器需满足静压差25 MPa条件下密封可靠,流量测试误差小于2%,压力测试误差小于3%等现场使用要求。
1)静压测试。将智能配水器下接头连接堵头,上接头连接测试管线,放置于高压测试仓内,智能配水器过流通道正向打压25 MPa,智能配水器密封高压测试仓环空反向打压25 MPa,30 min压降均小于0.2 MPa。
2)流量测试。将智能配水器与流量测试平台连接,流量测试范围5~50 m3/d,测试间隔5 m3/d,将智能配水器测试流量与标准值对比,测试误差小于1.8%(见图9)。
3)压力测试。将智能配水器与压力测试平台连接,压力测试范围0~60 MPa,测试间隔5 MPa,采用正程升压、反程降压测试,将智能配水器测试压力与标准值对比,测试误差小于2%(见图10)。
总体而言,智能配水器满足静压差25 MPa下密封,流量测试误差小于2%,压力测试误差小于3%等现场应用要求。
3. 现场试验
为进一步分析井下柔性复合管预置电缆数字式分注技术的可靠性,验证地面与井下双向通信、验封与分层流量自动测调等方面的功能,在长庆油田Q93-4井、Q91-8井、Q65-6井和Q65-4井等4口井开展了现场试验,最长应用时间超过3年,最大应用井深1 859 m,当管内压力为20 MPa时全管段最大伸长2.40 m,各项功能均正常,可实现注水井各注水层压力与流量变化的有效监测。通过分层流量井下自动测调,分层水量误差均在10%以内,注水井分注合格率长期保持在100%,提高了分注的有效性。
表 1 现场试验井情况统计Table 1. Situation statistics of field test wells井号 完井时间 管柱长度/
m管柱伸
长量/m封隔器验
封情况上层配注量/
(m3∙d−1)上层注水量/
(m3∙d−1)上层水量误差,% 下层配注量/
(m3∙d−1)下层注水量/
(m3∙d−1)下层水量
误差,%Q93-4 2019.10.21 1 841 1.6 合格 16 16.54 3.37 14 14.37 2.64 Q91-8 2019.10.29 1 837 1.9 合格 15 15.14 0.93 15 14.55 3.00 Q65-6 2019.11.15 1 859 2.4 合格 10 9.88 1.20 15 16.01 6.73 Q65-4 2020.07.25 1 781 1.7 合格 10 10.56 5.60 20 20.23 1.15 以其中的姬塬油田Q93-4井为例,该井井深1 860 m,井斜角23.7°,分层配注量分别为16和14 m3/d。该井设计管柱长度1 841 m,封隔器按照设计打压坐封,最大压力18 MPa,预置电缆柔性复合管伸长量为1.70 m(见图11),坐封后远程验证封隔器密封情况,地面建立激动压力,内压有波动,外压保持稳定,表明封隔器坐封可靠(见图12)。该井上层配注16 m3/d,实注16.54 m3/d,下层配注14 m3/d,实注14.37 m3/d,分层配注误差分别为3.37%和2.64%,按照油田配注合格要求,分层配注误差小于20%为合格,两层分层水量合格,且历史曲线显示流量平稳,长期满足配注要求(见图13)。现场试验表明,预置电缆柔性复合管数字式分注技术可实现井下分层注水、远程实时监控的目的。
4. 结论与建议
1)井下预置电缆柔性复合管爆破压力96 MPa、抗外压29 MPa,现场试验管柱最长伸长2.40 m,验封合格,其拉伸、抗外压等性能满足分注井封隔器坐封与长期在井下高压环境中的服役要求。
2)智能配水器具备分层流量自动测调、自动数据监测功能。预置电缆柔性复合管可满足供电、通信功能要求,实现分层压力、流量远程实时监控,大幅降低人工成本。
3)针对现场注水井带压作业要求,建议在预置电缆柔性复合管数字式分注技术基础上,开展配套带压作业装置及关键工具研究,进一步提升工艺的适应性。
-
表 1 储层初始基本地质参数[19]
Table 1 Basic reservoir parameters used for the numerical simulations
储层 孔隙度 渗透率/mD 水饱和度 气体饱和度 水合物饱和度 水合物+水层 0.35 2.9 0.660 0 0.34 水合物+水+气层 0.33 1.5 0.526 0.164 0.31 水+气层 0.32 7.4 0.922 0.078 0 -
[1] 马通,祝鹏,陈鸣,等. 琼东南盆地天然气水合物储层参数测井评价及分析[J]. 断块油气田,2023,30(2):252–260. doi: 10.6056/dkyqt202302010 MA Tong, ZHU Peng, CHEN Ming, et al. Logging evaluation and analysis of reservoir parameter for natural gas hydrate in Qiongdongnan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 252–260. doi: 10.6056/dkyqt202302010
[2] 张锦宏,周爱照,成海,等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149–158. doi: 10.11911/syztjs.2023021 ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149–158. doi: 10.11911/syztjs.2023021
[3] 张来斌,谢仁军,殷启帅. 深水油气开采风险评估及安全控制技术进展与发展建议[J]. 石油钻探技术,2023,51(4):55–65. doi: 10.11911/syztjs.2023036 ZHANG Laibin, XIE Renjun, YIN Qishuai. Technical progress and development suggestions for risk assessment and safety control of deep-water oil and gas exploitation[J]. Petroleum Drilling Techniques, 2023, 51(4): 55–65. doi: 10.11911/syztjs.2023036
[4] 关富佳,苏向光,何万军. 天然气水合物CO2+N2驱替置换动力学研究[J]. 特种油气藏,2024,31(3):150–157. GUAN Fujia, SU Xiangguang, HE Wanjun. Study on dynamics of gas hydrate CO2+N2 displacement[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 150–157.
[5] 张逸群,杜红星,王海柱,等. 双井周期注CO2联合降压法开采天然气水合物分析[J]. 天然气工业,2024,44(3):199–213. doi: 10.3787/j.issn.1000-0976.2024.03.017 ZHANG Yiqun, DU Hongxing, WANG Haizhu, et al. Dual-well cyclic CO2 injection assisted gas hydrate depressurization production[J]. Natural Gas Industry, 2024, 44(3): 199–213. doi: 10.3787/j.issn.1000-0976.2024.03.017
[6] QIN Xuwen, LIANG Qianyong, YE Jianliang, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. doi: 10.1016/j.apenergy.2020.115649
[7] YANG Mingjun, ZHAO Jie, ZHENG Jianan, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: a review[J]. Applied Energy, 2019, 256: 113878. doi: 10.1016/j.apenergy.2019.113878
[8] 李响,刘艺倬,李冰,等. 天然气水合物近井储层渗流规律模拟装置[J]. 石油机械,2024,52(7):10–18. doi: 10.1608/j.cnki.issn.1001-4578.2024.07.002 LIXiang, LIU Yizhuo, LIBing, et al. A simulator for flow in gas hydrate reservoir near wellbore[J]. China Petrleum Machinery , 2024, 52(7): 10–18. doi: 10.1608/j.cnki.issn.1001-4578.2024.07.002
[9] 周守为,李清平,朱军龙,等. 中国南海天然气水合物开发面临的挑战与思考[J]. 天然气工业,2023,43(11):152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015 ZHOU Shouwei, LI Qingping, ZHU Junlong, et al. Challenges and considerations for the development of natural gas hydrates in South China Sea[J]. Natural Gas Industry, 2023, 43(11): 152–163. doi: 10.3787/j.issn.1000-0976.2023.11.015
[10] KOU Xuan, LI Xiaosen, WANG Yi, et al. Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods[J]. Applied Energy, 2020, 277: 115575. doi: 10.1016/j.apenergy.2020.115575
[11] 马超,秦绪文,孙金声,等. 天然气水合物降压开采过程井周水合物的二次形成[J]. 中国石油大学学报(自然科学版),2022,46(6):21–30. doi: 10.3969/j.issn.1673-5005.2022.06.003 MA Chao, QIN Xuwen, SUN Jinsheng, et al. Secondary hydrate formation in gas hydrate production by depressurization[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6): 21–30. doi: 10.3969/j.issn.1673-5005.2022.06.003
[12] 平晓琳,韩国庆,岑学齐,等. 降压开采海域天然气水合物电潜泵排采生产优化[J]. 石油钻采工艺,2022,44(2):225–232. PING Xiaolin, HAN Guoqing, CEN Xueqi, et al. Drainage and production optimization of electric submersible pump for depressurization recovery of offshore natural gas hydrates[J]. Oil Drilling & Production Technology, 2022, 44(2): 225–232.
[13] 赛福拉·地力木拉提,董长银,李彦龙,等. 砾石充填介质复合堵塞对天然气水合物储层产能的影响规律研究[J]. 石油钻探技术,2022,50(5):94–101. doi: 10.11911/syztjs.2022055 SAIFULLA Dilmurat, DONG Changyin, LI Yanlong, et al. Influence law of hybrid plugging of gravel-packed media on productivity in natural gas hydrate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(5): 94–101. doi: 10.11911/syztjs.2022055
[14] WANG Bin, FAN Zhen, WANG Pengfei, et al. Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation[J]. Applied Energy, 2018, 227: 624–633. doi: 10.1016/j.apenergy.2017.09.109
[15] ZHAO Jiafei, LIU Yulong, GUO Xianwei, et al. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization[J]. Applied Energy, 2020, 260: 114275. doi: 10.1016/j.apenergy.2019.114275
[16] LV Tao, LI Xiaosen, CHEN Zhaoyang, et al. Experimental investigation on the production behaviors of methane hydrate in sandy sediments by different depressurization strategies[J]. Energy Technology, 2018, 6(12): 2501–2511.
[17] WANG Jiaqi, HE Jiale, DONG Hongsheng, et al. Association between multiphase seepage and exploitation of natural gas hydrate based on the Shenhu area of South China Sea[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109855. doi: 10.1016/j.petrol.2021.109855
[18] GUO Xianwei, XU Lei, WANG Bin, et al. Optimized gas and water production from water-saturated hydrate-bearing sediment through step-wise depressurization combined with thermal stimulation[J]. Applied Energy, 2020, 276: 115438. doi: 10.1016/j.apenergy.2020.115438
[19] LI Jinfa, YE Jianliang, QIN Xuwen, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5–16. doi: 10.31035/cg2018003
[20] YU Tao, GUAN Guoqing, WANG Dayong, et al. Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site[J]. Applied Energy, 2021, 285: 116466. doi: 10.1016/j.apenergy.2021.116466
[21] ZHANG Wei, LIANG Jinqiang, WEI Jiangong, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104191. doi: 10.1016/j.marpetgeo.2019.104191
[22] GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
[23] STONE H L. Probability model for estimating three-phase relative permeability[J]. Journal of Petroleum Technology, 1970, 22(2): 214–218. doi: 10.2118/2116-PA
[24] SELLM M S, SLOAN E D. Hydrate dissociation in sediment[J]. SPE Reservoir Engineering, 1990, 5(2): 245–251. doi: 10.2118/16859-PA
[25] MORIDIS G J. Numerical studies of gas production from methane hydrates[J]. SPE Journal, 2003, 8(4): 359–370. doi: 10.2118/87330-PA
[26] KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645–1653. doi: 10.1016/0009-2509(87)80169-0
[27] MALEGAONKAR M B, DHOLABHAI P D, BISHNOI P R. Kinetics of carbon dioxide and methane hydrate formation[J]. The Canadian Journal of Chemical Engineering, 1997, 75(6): 1090–1099. doi: 10.1002/cjce.5450750612
[28] SUN Xuefei, MOHANTY K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11): 3476–3495. doi: 10.1016/j.ces.2005.12.017
[29] 崔伟,肖加奇. 应用数值模拟研究神狐海域水合物第一次试采数据[J]. 地球科学,2022,47(5):1890–1900. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205025 CUI Wei, XIAO Jiaqi. Numerical simulation for data analyses of first gas hydrate trial production test in Shenhu area[J]. Earth Science, 2022, 47(5): 1890–1900. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205025
[30] CHEN Lin, FENG Yongchang, OKAJIMA J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 55–66. doi: 10.1016/j.jngse.2018.02.029
[31] 陈朝阳,游昌宇,吕涛,等. 南海北部天然气水合物藏垂直井网降压开采数值模拟[J]. 天然气工业,2020,40(8):177–185. doi: 10.3787/j.issn.1000-0976.2020.08.015 CHEN Zhaoyang, YOU Changyu, LYU Tao, et al. Numerical simulation of the depressurization production of natural gas hydrate reservoirs by vertical well patterns in the northern South China Sea[J]. Natural Gas Industry, 2020, 40(8): 177–185. doi: 10.3787/j.issn.1000-0976.2020.08.015