新型靶向增黏驱油剂研制及现场试验

宋倩

宋倩. 新型靶向增黏驱油剂研制及现场试验[J]. 石油钻探技术,2025,53(2):1−7. DOI: 10.11911/syztjs.2025036
引用本文: 宋倩. 新型靶向增黏驱油剂研制及现场试验[J]. 石油钻探技术,2025,53(2):1−7. DOI: 10.11911/syztjs.2025036
SONG Qian. Development and field test of a new type of targeted viscosity-increasing oil displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(2):1−7. DOI: 10.11911/syztjs.2025036
Citation: SONG Qian. Development and field test of a new type of targeted viscosity-increasing oil displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(2):1−7. DOI: 10.11911/syztjs.2025036

新型靶向增黏驱油剂研制及现场试验

基金项目: 国家自然科学基金联合基金重点支持项目“柔性胶囊聚合物驱提高采收率的基础理论研究”(编号:U21B2070)部分研究内容。
详细信息
    作者简介:

    宋倩(1991—),女,山东威海人,2013年毕业于中国地质大学(武汉)物理学专业,2015年获中国地质大学(武汉)地质工程专业工程硕士学位,工程师,主要从事化学驱提高采收率技术方面的研究工作。E-mail:521055637@qq.com

  • 中图分类号: TE357.46+1

Development and Field Test of a New Type of Targeted Viscosity-Increasing Oil Displacement Agent

  • 摘要:

    针对目前常规聚合物驱存在注入过程中机械降解黏度损失严重、油藏深部调驱能力弱的局限性,借鉴医学、纺织、涂料等领域涉及的微胶囊技术,利用反相乳液聚合与界面原位聚合技术,将常规聚合物包覆在微胶囊外壳内,研制出新型靶向增黏驱油剂(TVP)。利用微观手段表征了TVP的破壳缓释过程,并对TVP缓释影响因素、抗机械剪切性能、缓释前后的阻力系数及驱油效果进行了研究。研究发现,TVP缓释前TVP呈球形,平均粒径600~800 nm,微胶囊外壳在高温和高pH值下均可释放聚合物,聚合物释放后溶于水中形成网状结构,在5 000 mg/L质量浓度下,TVP可使水相增黏至30 mPa·s左右;在微胶囊外壳的保护下,TVP具有抗强机械剪切能力,剪切后黏度损失率仅3.3%;TVP缓释前注入岩心的阻力系数仅3.0左右,注入性能较好,缓释后注入岩心的阻力系数增至36.88,内提高采收率可达26.7%,具有良好的油藏深部扩波及能力和驱油效果。对TVP进行了现场试验,试验中3口注水井压力平均上升6.4 MPa,2口油井动液面上升,含水率降低,日增油4.4 t,注聚效果初见成效。研究结果表明,TVP作为新型驱油剂,在油田三次采油中具有显著提高原油采收率的潜力。

    Abstract:

    In view of the limitations of conventional polymer flooding, such as serious viscosity loss due to mechanical degradation during injection process and weak ability of deep reservoir flooding, a novel targeted viscous-increasing oil displacement agent (TVP) was developed by using reverse-phase emulsion polymerization and interfacial in-situ polymerization technology to cover conventional polymer in microcapsule shell by referring to microcapsule technology involved in medicine, textile, coating and other fields. The process of TVP sustained release was characterized by microscopic means, and the influencing factors of TVP sustained release, mechanical shear resistance, resistance coefficient before and after sustained release and oil displacement effect were studied. The results show that TVP is spherical with an average particle size of 600~800 nm before sustained release. The microcapsule shell can release polymer at both high temperature and high pH value, and the polymer dissolves in water to form a spatial network structure after release. At a mass concentration of 5000 mg/L, TVP can increase the aqueous phase viscosity to about 30 mPa·s. Under the protection of the microcapsule shell, TVP has strong mechanical shear resistance, and the viscosity loss rate after shear is only 3.3%. Before TVP sustained release, the resistance coefficient of injected core is only about 3.0, and the injection performance is good. After TVP sustained release, the resistance coefficient of injected core is increased to 36.88, and the internal enhanced recovery rate can reach 26.7%, which has good deep reservoir spreading and displacement ability. In the field test, the average pressure of the three injection Wells increased by 6.4 MPa, the dynamic fluid level of the two Wells increased, the water cut decreased, and the daily oil increase was 4.4 t. As a new oil displacement agent, TVP has the potential to significantly improve oil recovery in tertiary oil recovery.

  • 图  1   SEM微观图像

    Figure  1.   Microscopic image under scanning electron microscope

    图  2   AFM微观图像

    Figure  2.   Microscopic image under atomic force microscope

    图  3   不同老化温度下黏度随时间变化曲线

    Figure  3.   Viscosity curve with time at different aging temperatures

    图  4   不同pH值下黏度随时间变化曲线

    Figure  4.   Viscosity curve with time at different pH

    图  5   剪切前后TVP溶液黏度随老化时间变化曲线

    Figure  5.   Curve of solution viscosity before and after shearing

    图  6   未破壳TVP注入压力曲线

    Figure  6.   Pressure curve of unbroken TVP

    图  7   动态破壳TVP注入压力曲线

    Figure  7.   Pressure curve of dynamic breaking TVP

    图  8   常规聚合物驱替曲线

    Figure  8.   Displacement curve of conventional polymer

    图  9   TVP驱替曲线

    Figure  9.   Displacement curve of TVP

  • [1] 刘益嘉. 三次采油化学驱油技术策略[J]. 化学工程与装备,2022(2):41–42.

    LIU Yijia. Technical strategy of chemical flooding for tertiary oil recovery[J]. Chemical Engineering & Equipment, 2022(2): 41–42.

    [2] 李刚,宋群华,高振东,等. 运用聚合物驱油技术提高采收率方法研究[J]. 当代化工,2022,51(8):1974–1977. doi: 10.3969/j.issn.1671-0460.2022.08.045

    LI Gang, SONG Qunhua, GAO Zhendong, et al. Study on improving oil recovery by using polymer flooding technology[J]. Contemporary Chemical Industry, 2022, 51(8): 1974–1977. doi: 10.3969/j.issn.1671-0460.2022.08.045

    [3] 刘柬葳,彭勃. 交联聚合物微球在深部调驱中的应用[J]. 油田化学,2022,39(1):179–185.

    LIU Jianwei, PENG Bo. Research progress of crosslinked polymer microspheres for deep control and flooding[J]. Oilfield Chemistry, 2022, 39(1): 179–185.

    [4] 孙福街. 中国海上油田高效开发与提高采收率技术现状及展望[J]. 中国海上油气,2023,35(5):91–99.

    SUN Fujie. Status and prospects of efficient development and EOR technologies in China offshore oilfields[J]. China Offshore Oil and Gas, 2023, 35(5): 91–99.

    [5] 曹绪龙,季岩峰,祝仰文,等. 聚合物驱研究进展及技术展望[J]. 油气藏评价与开发,2020,10(6):8–16. doi: 10.3969/j.issn.2095-1426.2020.06.002

    CAO Xulong, JI Yanfeng, ZHU Yangwen, et al. Research advance and technology outlook of polymer flooding[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(6): 8–16. doi: 10.3969/j.issn.2095-1426.2020.06.002

    [6] 束宁凯,汪卫东,曹嫣镔,等. 化学驱聚合物溶液配注工艺技术及矿场应用效果[J]. 石油学报,2022,43(5):668–679. doi: 10.7623/syxb202205008

    SHU Ningkai, WANG Weidong, CAO Yanbin, et al. Preparation and injection technology of chemical flooding polymer solution and its application effect in fields[J]. Acta Petrolei Sinica, 2022, 43(5): 668–679. doi: 10.7623/syxb202205008

    [7] 郭光范,叶仲斌,舒政. 近井地带剪切作用对驱油用聚合物溶液渗流特性的影响[J]. 油田化学,2014,31(1):90–94.

    GUO Guangfan, YE Zhongbin, SHU Zheng. Effects of near wellbore shearing on the seepage characteristics of flooding polymer solutions[J]. Oilfield Chemistry, 2014, 31(1): 90–94.

    [8] 于鹏. 聚合物配制站系统运行适应性分析[J]. 化学工程与装备,2020(4):115–116.

    YU Peng. Analysis of operating adaptability of polymer preparation station system[J]. Chemical Engineering & Equipment, 2020(4): 115–116.

    [9] 舒政,叶仲斌,张健,等. 聚合物溶液近井地带速率剪切模拟实验装置设计[J]. 油气地质与采收率,2010,17(4):55–58. doi: 10.3969/j.issn.1009-9603.2010.04.015

    SHU Zheng, YE Zhongbin, ZHANG Jian, et al. Experiment design of velocity shearing simulation for polymer adjacent to borehole[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(4): 55–58. doi: 10.3969/j.issn.1009-9603.2010.04.015

    [10] 舒政,杨雅兰,王同旺,等. 近井地带剪切强度对疏水缔合聚合物相对分子质量的影响[J]. 石油化工应用,2022,41(1):44–50. doi: 10.3969/j.issn.1673-5285.2022.01.010

    SHU Zheng, YANG Yalan, WANG Tongwang, et al. The effect of shear strength near the well on the molecular weight of hydrophobically associating polymers[J]. Petrochemical Industry Application, 2022, 41(1): 44–50. doi: 10.3969/j.issn.1673-5285.2022.01.010

    [11] 陈文娟,王秀军,胡科,等. 高抗剪切聚丙烯酰胺类聚合物驱油剂的合成及性能[J]. 西安石油大学学报(自然科学版),2018,33(6):105–111. doi: 10.3969/j.issn.1673-064X.2018.06.017

    CHEN Wenjuan, WANG Xiujun, HU Ke, et al. Synthesis and properties of Polyacrylamide polymer flooding agent with high shear resistance[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2018, 33(6): 105–111. doi: 10.3969/j.issn.1673-064X.2018.06.017

    [12] 于浩然. 绿色靶向微胶囊驱油体系的制备与性能研究[D]. 济南:山东大学,2021.

    YU Haoran. Preparation and performance of green targeted microcapsule oil displacement system[D]. Jinan: Shandong University, 2021.

    [13] 雷明,罗明良,战永平,等. 化学自生热压裂液技术研究进展[J]. 油田化学,2022,39(1):170–178.

    LEI Ming, LUO Mingliang, ZHAN Yongping, et al. Research progress of fracturing fluid with chemical in-situ heat generation[J]. Oilfield Chemistry, 2022, 39(1): 170–178.

    [14] 李继勇,邵红云,宋时权,等. 压裂用胶囊破胶剂性能评价方法研究[J]. 石油与天然气化工,2021,50(6):87–90. doi: 10.3969/j.issn.1007-3426.2021.06.015

    LI Jiyong, SHAO Hongyun, SONG Shiquan, et al. Research on performance evaluation method of capsule breaker for fracturing[J]. Chemical Engineering of Oil and Gas, 2021, 50(6): 87–90. doi: 10.3969/j.issn.1007-3426.2021.06.015

    [15] 杨强斌,李风. 压裂液微胶囊材料的制备及应用[J]. 山东化工,2015,44(5):22–26. doi: 10.3969/j.issn.1008-021X.2015.05.008

    YANG Qiangbin, LI Feng. Preparation and application of polymeric capsule dressing for gel breaker[J]. Shandong Chemical Industry, 2015, 44(5): 22–26. doi: 10.3969/j.issn.1008-021X.2015.05.008

    [16] 张凡,杨建军,吴庆云,等. 聚氨酯微胶囊的应用研究进展[J]. 粘接,2013,34(12):80–83. doi: 10.3969/j.issn.1001-5922.2013.12.029

    ZHANG Fan, YANG Jianjun, WU Qingyun, et al. Progress of application of polyurethane microcapsules[J]. Adhesion, 2013, 34(12): 80–83. doi: 10.3969/j.issn.1001-5922.2013.12.029

    [17] 张微微,胡静,包晓丽. 聚氨酯微胶囊应用研究进展[J]. 应用技术学报,2021,21(1):21–29. doi: 10.3969/j.issn.2096-3424.20016

    ZHANG Weiwei, HU Jing, BAO Xiaoli. Research progress in the application of polyurethane microcapsules[J]. Journal of Technology, 2021, 21(1): 21–29. doi: 10.3969/j.issn.2096-3424.20016

    [18] 张峰,吴斌. 可控降解聚氨酯弹性体的合成和水解性能研究[J]. 聚氨酯工业,2022,37(2):27–30. doi: 10.3969/j.issn.1005-1902.2022.02.007

    ZHANG Feng, WU Bin. Synthesis and hydrolysis properties of controllable degradation polyurethane elastomers[J]. Polyurethane Industry, 2022, 37(2): 27–30. doi: 10.3969/j.issn.1005-1902.2022.02.007

    [19] 季岩峰,杨勇,曹绪龙,等. 微胶囊乳液型聚合物驱油剂研制与评价[J]. 石油学报,2023,44(6):975–982. doi: 10.7623/syxb202306007

    JI Yanfeng, YANG Yong, CAO Xulong, et al. Development and evaluation of microencapsulated emulsion polymer flooding agent[J]. Acta Petrolei Sinica, 2023, 44(6): 975–982. doi: 10.7623/syxb202306007

图(9)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2025-02-25
  • 网络出版日期:  2025-03-16

目录

    /

    返回文章
    返回