南海东部恩平21−4油田超深大位移井固井关键技术

覃建宇, 李波, 饶志华, 金勇, 张勇, 刘永峰

覃建宇,李波,饶志华,等. 南海东部恩平21−4油田超深大位移井固井关键技术[J]. 石油钻探技术,2025,53(2):1−8. DOI: 10.11911/syztjs.2025026
引用本文: 覃建宇,李波,饶志华,等. 南海东部恩平21−4油田超深大位移井固井关键技术[J]. 石油钻探技术,2025,53(2):1−8. DOI: 10.11911/syztjs.2025026
QIN Jianyu, LI Bo, RAO Zhihua, et al. Research and application of key cementing technologies for an ultra-deep large-displacement well in Enping 21-4 Oilfield, Eastern South China Sea [J]. Petroleum Drilling Techniques, 2025, 53(2):1−8. DOI: 10.11911/syztjs.2025026
Citation: QIN Jianyu, LI Bo, RAO Zhihua, et al. Research and application of key cementing technologies for an ultra-deep large-displacement well in Enping 21-4 Oilfield, Eastern South China Sea [J]. Petroleum Drilling Techniques, 2025, 53(2):1−8. DOI: 10.11911/syztjs.2025026

南海东部恩平21−4油田超深大位移井固井关键技术

详细信息
    作者简介:

    覃建宇(1984—),男,广西来宾人,2006年毕业于中国地质大学(武汉)勘查技术与工程专业,高级工程师,主要从事海洋石油钻完井技术研究与管理工作。E-mail:qinjy@cnooc.com.cn

  • 中图分类号: TE256+.3

Research and Application of Key Cementing Technologies for an Ultra-Deep Large-Displacement Well in Enping 21-4 Oilfield, Eastern South China Sea

  • 摘要:

    南海东部恩平21−4油田A1H井是一口超深大位移井,是中国海油ϕ244.5 mm套管下入最深的井,该井ϕ244.5 mm套管下深8 125.00 m,裸眼长度5 125.00 m,裸眼段水平位移5 093.17 m,套管下入难度大,且实钻穿越3个漏层,固井漏失风险大,固井质量难以保证。为攻克该井固井技术难题,研发了套管附件磨损评价装置并完成入井附件的评价优选,为安全顺利下入套管提供了技术保障;利用循环摩阻精准计算技术,实现了作业期间井筒内压力的准确控制与浆柱结构的优化设计,有效回避了固井漏失风险;应用双重悬浮超低密度低摩阻首浆和高固相低黏高切尾浆水泥浆确保井内流体流变性合理匹配,有效提高了固井顶替效率;通过温度压力耦合计算技术准确评估了井底循环温度,为水泥浆试验提供了合理的温度。通过综合应用各项关键技术,恩平21−4油田A1H井固井施工顺利进行并取得成功,为该海域超深大位移井固井提供了技术保障。

    Abstract:

    he Enping 21-4 ultra-deep and large-displacement well, operated by CNOOC, represents the deepest ϕ244.55 mm casing run in China, with a casing depth of 8,125 meters, a barehole length of 5,125 meters, and a horizontal displacement of 5,093.17 meters in the barehole section. Faced with extreme depth and displacement challenges, along with three actual drilling-induced loss zones encountered during construction that heightened risks of cementing loss and compromised cement quality assurance, the project team developed and implemented four key technologies to ensure successful casing deployment and cementing operations. Specifically, a dedicated casing accessory wear evaluation system was developed for in-hole accessory performance assessment and optimization, providing technical guarantees for safe casing running; circulation friction precision calculation technology enabled real-time pressure control and slurry structure optimization during operations, effectively avoiding cementing loss risks; a dual-suspended slurry system combining an ultra-low-density low-friction lead slurry with a high-solid content low-viscosity tail slurry ensured rheological compatibility of wellbore fluids, significantly improving cement displacement efficiency; and temperature-pressure coupled simulation accurately evaluated bottomhole circulating temperature, offering rational temperature parameters for cement slurry formulation. Through the integrated application of these technologies, the Enping 21-4 well achieved smooth cementing operations despite its extreme conditions. This case demonstrates that systematic technological innovation can effectively manage ultra-deep large-displacement well challenges, offering valuable reference for offshore oilfield development in deepwater and ultra-deep environments with high displacement and complex geological features. The successful implementation not only confirms CNOOC's technical leadership in global deepwater drilling engineering for frontier reservoirs but also underscores its capability to deliver engineering solutions for such extreme wells, reinforcing its position in international industry leadership.

  • 图  1   双重悬浮超低密度低摩阻水泥浆体系的悬浮稳定性

    Figure  1.   The suspension stability of the double-suspended ultra-low density low-friction cement slurry system

    图  2   固井循环温度预测结果

    Figure  2.   Prediction result of cementing cycle temperature

    图  3   软件模拟结果与实测数据分析

    Figure  3.   Analysis of software simulation results and measured data

    图  4   固井顶替效率预测结果

    Figure  4.   Cementing displacement efficiency prediction results

    表  1   磨损试验结果

    Table  1   Wear test result

    扶正器材质 模拟磨损距离/m 厚度/mm 磨损率,%
    试验前 试验后
    合金 3 000(L80钢) 15.12 15.07 0.33
    6 000(泥岩) 15.12 15.02 0.66
    树脂 3 000(L80钢) 14.79 14.78 0.07
    6 000(泥岩) 14.79 13.82 6.56
    树脂+陶瓷 3 000(L80钢) 15.10 15.08 0.13
    6 000(泥岩) 15.10 14.22 5.83
    下载: 导出CSV

    表  2   海油模型与其他模型平均误差对比

    Table  2   Error analysis of density correction model

    流体API模型改进API模型海油模型温度压力
    确定系数平均误差,%确定系数平均误差,%确定系数平均误差,%温度/℃压力/MPa
    钻井液配方1#0.9960.3430.999 70.0800.999 890.048265.56172
    前置液配方2#0.9750.3780.997 00.1430.999 980.014160.00152
    水泥浆配方3#0.9890.4320.997 00.2180.999 180.111262.78207
    水泥浆配方4#0.9580.9450.995 00.3240.999 850.052162.78172
    水泥浆配方5#0.9600.6610.970 00.5460.992 100.353204.44152
    下载: 导出CSV

    表  3   流变修正模型误差分析

    Table  3   Error Analysis of rheological correction model

    流体确定系数平均偏差,%
    钻井液方1#0.9973.6
    前置液配方2#0.9991.6
    水泥浆配方3#0.9864.6
    水泥浆配方4#0.9903.9
    下载: 导出CSV

    表  4   A井井身结构

    Table  4   Wellbore structure of Well A

    井深(测深)/m套管内径/mm环空内径/mm环空外径/mm
    0~2 700121.41139.7244.5
    2 700~3 500108.61139.7244.5
    3 500~3 700108.61139.7209.5
    下载: 导出CSV

    表  5   0.5 m3/min排量下实测温度与计算温度对比

    Table  5   Comparison results of measured temperature and calculated temperature (0.5 m3/min)

    时间/s测点1#温度测点2#温度
    计算结果/℃测量结果/℃误差计算结果/℃测量结果/℃误差
    1 50066.4666.850.3974.5076.502.00
    4 50064.4965.601.1171.7371.900.17
    7 50064.0263.600.4270.4868.302.18
    10 50063.6362.201.4369.5466.303.24
    15 00063.1662.200.9468.5365.503.03
    下载: 导出CSV

    表  6   1.0 m3/min排量下实测温度与计算温度对比

    Table  6   Comparison results of measured temperature and calculated temperature (1.0 m3/min)

    时间/s测点1#温度测点2#温度
    计算结果/℃测量结果/℃误差计算结果/℃测量结果/℃误差
    60058.1358.700.5768.9368.100.83
    1 80056.9255.601.3264.5764.900.33
    3 60056.4755.800.6762.4862.400.08
    4 80055.9454.701.2460.5957.602.99
    6 60055.4853.201.2859.4255.603.82
    下载: 导出CSV

    表  7   1.5 m3/min排量下实测温度与计算温度对比

    Table  7   Comparison results of measured temperature and calculated temperature (1.5 m3/min)

    时间/s测点1#温度测点2#温度
    计算结果/℃测量结果/℃误差计算结果/℃测量结果/℃误差
    60058.1358.700.5768.9368.100.83
    1 80056.9255.601.3264.5764.900.33
    3 60056.4755.800.6762.4862.400.08
    4 80055.9454.701.2460.5957.602.99
    6 60055.4853.201.2859.4255.603.82
    下载: 导出CSV

    表  8   3.0 m3/min排量下实测温度与计算温度对比

    Table  8   Comparison results of measured temperature and calculated temperature (3.0 m3/min)

    时间/s测点1#温度测点2#温度
    计算结果/℃测量结果/℃误差计算结果/℃测量结果/℃误差
    60058.8056.802.067.3968.701.31
    1 80057.0054.602.462.1763.100.93
    3 60056.2054.601.659.8961.601.71
    4 80055.3054.400.957.9360.402.47
    6 00054.7054.400.357.0660.002.94
    下载: 导出CSV

    表  9   3.5 m3/min排量下实测温度与计算温度对比

    Table  9   Comparison results of measured temperature and calculated temperature (3.5 m3/min)

    时间/s测点1#温度测点2#温度
    计算结果/℃测量结果/℃误差计算结果/℃测量结果/℃误差
    60057.0058.001.0067.3767.900.53
    1 80057.0058.001.0063.0264.301.27
    3 60056.6357.500.8761.4762.601.13
    4 80056.1057.701.6060.3761.901.53
    6 00055.8258.002.1859.9061.902.00
    下载: 导出CSV

    表  10   3.8 m3/min排量下实测温度与计算温度对比

    Table  10   Comparison results of measured temperature and calculated temperature (3.8 m3/min)

    时间/s测点1#温度测点2#温度
    计算结果/℃测量结果/℃误差计算结果/℃测量结果/℃误差
    60057.1856.800.3867.3366.700.63
    1 20057.4357.400.0364.6964.300.39
    1 80057.3957.200.1963.3663.300.06
    2 40057.2657.000.2662.6062.400.20
    3 60056.9857.500.5261.7662.801.04
    下载: 导出CSV

    表  11   高固相低黏高切水泥浆体系颗粒级配

    Table  11   Particle grading of high solid phase, low viscosity and high cut cement slurry system

    材料 D10/μm D50/μm D90/μm
    水泥 1.73 14.50 47.80
    人造空心减轻材料 35.20 58.70 95.30
    火山灰材料 1.40 10.80 40.20
    下载: 导出CSV
  • [1] 吴静,丁琳,张晓钊,等. 珠江口盆地恩平凹陷海相三角洲岩性圈闭勘探的关键技术[J]. 长江大学学报(自然科学版),2022,19(1):44–53. doi: 10.3969/j.issn.1673-1409.2022.01.005

    WU Jing, DING Lin, ZHANG Xiaozhao, et al. Key technologies of lithologic trap exploration in marine delta of enping sag in Pearl River Mouth Basin[J]. Journal of Yangtze University (Natural Science Edition), 2022, 19(1): 44–53. doi: 10.3969/j.issn.1673-1409.2022.01.005

    [2] 杨昆鹏,李鹏晓,敖康伟,等. 富满油田长封固段低摩阻超低密度水泥浆固井技术[J]. 石油钻探技术,2023,51(6):64–70. doi: 10.11911/syztjs.2023060

    YANG Kunpeng, LI Pengxiao, AO Kangwei, et al. Ultra-low density and low-friction cement slurry cementing technologies in long sealing sections of fuman oilfield[J]. Petroleum Drilling Techniques, 2023, 51(6): 64–70. doi: 10.11911/syztjs.2023060

    [3] 王鼎,万向臣,杨晨. 低摩阻耐压防漏低密度水泥浆固井技术[J]. 钻井液与完井液,2022,39(5):608–614. doi: 10.12358/j.issn.1001-5620.2022.05.012

    WANG Ding, WAN Xiangchen, YANG Chen. Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 608–614. doi: 10.12358/j.issn.1001-5620.2022.05.012

    [4] 薛亮,陈博,樊林栋,等. 钻井液静切力对水平段固井顶替界面影响规律研究[J]. 钻采工艺,2017,40(3):26–29. doi: 10.3969/J.ISSN.1006-768X.2017.03.09

    XUE Liang, CHEN Bo, FAN Lindong, et al. Study on effects of drilling fluid gel strength on slurry displacement interface during horizontal cementing[J]. Drilling & Production Technology, 2017, 40(3): 26–29. doi: 10.3969/J.ISSN.1006-768X.2017.03.09

    [5]

    TARDY P M J, BITTLESTON S H. A model for annular displacements of wellbore completion fluids involving casing movement[J]. Journal of Petroleum Science and Engineering, 2015, 126: 105–123. doi: 10.1016/j.petrol.2014.12.018

    [6] 江文龙. 深水无隔水管钻井水力计算模型研究[D]. 北京:中国石油大学(北京),2019.

    JIANG Wenlong. Research on the hydraulic calculation models in deep water riserless drilling[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [7]

    HUANG Wenjun, GAO Deli, LIU Yinghua. Mechanical model and optimal design method of tubular strings with connectors constrained in extended-reach and horizontal wells[J]. Journal of Petroleum Science and Engineering, 2018, 166: 948–961. doi: 10.1016/j.petrol.2018.01.072

    [8] 冯义,任凯,刘俊田,等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺,2024,47(3):33–41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05

    FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling and Production Technology, 2024, 47(3): 33–41. doi: 10.3969/J.ISSN.1006-768X.2024.03.05

    [9] 池明,刘涛,薛承文,等. 高温高压深井套管磨损预测与剩余强度校核研究[J]. 钻采工艺,2021,44(6):1–6. doi: 10.3969/J.ISSN.1006-768X.2021.06.001

    CHI Ming, LIU Tao, XUE Chengwen, et al. Research on casing wear prediction and residual strength check in high pressure high temperature deep wells[J]. Drilling & Production Technology, 2021, 44(6): 1–6. doi: 10.3969/J.ISSN.1006-768X.2021.06.001

    [10] 赵军,黄文君,高德利. 大位移井钻井管柱作业极限实时预测方法[J]. 石油钻采工艺,2023,45(5):523–531.

    ZHAO Jun, HUANG Wenjun, GAO Deli. Real-time prediction method of pipe string operation limits in drilling extended-reach wells[J]. Oil Drilling & Production Technology, 2023, 45(5): 523–531.

    [11] 钱浩东,张帆,张治发,等. 钻具屈曲影响下的管柱摩阻扭矩分析[J]. 钻采工艺,2023,46(3):22–28. doi: 10.3969/J.ISSN.1006⁃768X.2023.03.04

    QIAN Haodong, ZHANG Fan, ZHANG Zhifa, et al. Analysis of pipe string friction and torque under the influence of drilling tool buckling[J]. Drilling & Production Technology, 2023, 46(3): 22–28. doi: 10.3969/J.ISSN.1006⁃768X.2023.03.04

    [12] 肖洋,宗庆伟,李榕,等. 漂浮下套管技术在川西长裸眼水平井的试验[J]. 钻采工艺,2022,45(5):34–38.

    XIAO Yang, ZONG Qingwei, LI Rong, et al. Experiment of floating casing technology in long open-hole horizontal well in western Sichuan[J]. Drilling & Production Technology, 2022, 45(5): 34–38.

    [13] 屈建省,徐同台,徐璧华,等. 油气井注水泥理论与应用[M]. 2版. 北京:石油工业出版社,2022:550-554.

    QU Jiansheng, XU Tongtai, XU Bihua, et al. Theory and application of oil and gas well cementing[M]. 2nd ed. Beijing: Petroleum Industry Press, 2022: 550-554.

    [14] 田军政. 平湖油田高温大位移井尾管固井技术实践[J]. 钻探工程,2024,51(增刊1):378-383.

    TIAN Junzheng. Practice of liner cementing technology for high temperature and large displacement wells in Pinghu Oilfield[J]. Drilling Engineering, 2024, 51(supplement 1): 378-383.

    [15] 王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010

    WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(2): 103–112. doi: 10.3969/j.issn.1673-5005.2022.02.010

    [16]

    YANG Hongwei, LI Jun, LIU Gonghui, et al. Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling[J]. Energy, 2019, 179: 138–153. doi: 10.1016/j.energy.2019.04.214

    [17]

    MAO Liangjie, ZHANG Zheng. Transient temperature prediction model of horizontal wells during drilling shale gas and geothermal energy[J]. Journal of Petroleum Science and Engineering, 2018, 169: 610–622. doi: 10.1016/j.petrol.2018.05.069

    [18]

    KHAN N U, MAY R. A generalized mathematical model to predict transient bottomhole temperature during drilling operation[J]. Journal of Petroleum Science and Engineering, 2016, 147: 435–450. doi: 10.1016/j.petrol.2016.08.017

    [19] 赵琥. 南海东部大位移井固井技术浅析[J]. 长江大学学报(自然科学版),2011,8(7):38–40.

    ZHAO Hu. Brief analysis of cementing technology for extended-reach wells in the eastern South China Sea[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(7): 38–40.

  • 期刊类型引用(19)

    1. 王川,陈秋帆,夏勇. 海底泥浆举升钻井系统钻遇天然气水合物时的动态风险分析. 安全与环境学报. 2024(02): 479-487 . 百度学术
    2. 翟诚,吴迪,秦冬冬. 天然气水合物注热分解诱发储层变形破坏的正交数值模拟研究. 特种油气藏. 2024(02): 112-119 . 百度学术
    3. 刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 . 百度学术
    4. 贺保卫,马志宇,崔海朋,杜鹏. 基于Unity 3D的可燃冰开采环境监测模拟系统设计. 计算机应用与软件. 2023(08): 121-125+154 . 百度学术
    5. 吴艳辉,代锐,张磊,朱志潜,高禹,刘楷,徐鹏,张雨. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法. 钻井液与完井液. 2023(04): 415-422 . 百度学术
    6. 赵凯,李润森,冯永存,高伟,张振伟,窦亮彬,毕刚. 非均匀地应力场下水合物储层水平井井周塑性区分布. 中南大学学报(自然科学版). 2022(03): 952-962 . 百度学术
    7. 王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 . 百度学术
    8. 王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 . 百度学术
    9. 马永乐,张勇,刘晓栋,侯岳,杨金龙,宋本岭,刘涛,李荔. 海域天然气水合物低温抑制性钻井液体系. 钻井液与完井液. 2021(05): 544-551+559 . 百度学术
    10. 王偲,谢文卫,张伟,陈靓,陈浩文. RMR技术在海域天然气水合物钻探中的适应性分析. 探矿工程(岩土钻掘工程). 2020(02): 17-23 . 百度学术
    11. 史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 . 百度学术
    12. 李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 . 本站查看
    13. 李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 . 本站查看
    14. 李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 . 百度学术
    15. 牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 . 本站查看
    16. 迟咏梅,徐松杰,曹玉廷,董坚. 新型两亲性聚酰胺的合成及性质. 应用化学. 2017(03): 269-275 . 百度学术
    17. 庞维新,李清平,程艳,王炳明. 水合物堵塞治理工具和方法研究. 石油机械. 2016(03): 68-72 . 百度学术
    18. 光新军,王敏生. 海洋天然气水合物试采关键技术. 石油钻探技术. 2016(05): 45-51 . 本站查看
    19. 孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 . 本站查看

    其他类型引用(13)

图(4)  /  表(11)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 32
出版历程
  • 收稿日期:  2025-01-20
  • 修回日期:  2025-03-22
  • 网络出版日期:  2025-04-02

目录

    /

    返回文章
    返回