沉淀粒子调驱剂的研究与应用

闫冬, 曾奇灯, 宫汝祥, 曾浩见, 彭丹, 刘陆芃

闫冬,曾奇灯,宫汝祥,等. 沉淀粒子调驱剂的研究与应用[J]. 石油钻探技术,2025,53(1):122−129. DOI: 10.11911/syztjs.2025013
引用本文: 闫冬,曾奇灯,宫汝祥,等. 沉淀粒子调驱剂的研究与应用[J]. 石油钻探技术,2025,53(1):122−129. DOI: 10.11911/syztjs.2025013
YAN Dong, ZENG Qideng, GONG Ruxiang, et al. Study and application of precipitated particle profile control and displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(1):122−129. DOI: 10.11911/syztjs.2025013
Citation: YAN Dong, ZENG Qideng, GONG Ruxiang, et al. Study and application of precipitated particle profile control and displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(1):122−129. DOI: 10.11911/syztjs.2025013

沉淀粒子调驱剂的研究与应用

详细信息
    作者简介:

    闫冬(1990—),男,黑龙江哈尔滨人,2013年毕业于东北石油大学石油工程专业,2018年获东北石油大学油气田开发专业硕士学位,工程师,主要从事提高采收率方面的研究工作。E-mail:yandong5@cosl.com.cn

  • 中图分类号: TE39

Study and Application of Precipitated Particle Profile Control andDisplacement Agent

  • 摘要:

    针对注入水或地层水矿化度高油田聚合物驱驱油效果差的问题,开发了一种“硅酸钠+分散剂”的调驱体系。该调驱体系与注入水或地层水中的钙镁离子反应,可以迅速生成最小粒径小于100 nm的沉淀粒子。通过调节分散剂与硅酸钠质量浓度之比,可调控沉淀粒子的团聚程度,使初始粒径在 60.4 nm至3.85 μm可控,分散时间在2~144 h可控,可适配不同渗透率的油藏。沉淀粒子聚集后,聚集体的最终粒径超70 μm,可有效封堵高渗流通道,实现深部液流转向。该调驱体系在南海某油田的P8注采井组进行了现场试验,该井组注入水的矿化度为34 g/L,连续注入沉淀调驱体系192 d后,平均注水压力升高2.9 MPa,2口受效井的含水率分别降低了4.6和17.8百分点,累计增油量超6 200 m³,有效期在4月以上。研究和现场试验表明,设计的沉淀调驱体系可以解决注入水矿化度高油田聚合物调驱效果差的问题,为注入水高矿化度油田调驱提供技术支持。

    Abstract:

    In the oilfield with a high salinity of injected water or formation water, the effect of polymer profile control and displacement agent is poor. To address this issue, a profile control and displacement system of “sodium silicate + dispersant” was designed. Together with calcium and magnesium ions in injected water or formation water, precipitated particles with a minimum particle size of less than 100 nm could be rapidly formed. Adjusting the concentration ratio of sodium silicate to dispersant could change the agglomeration degree of precipitated particles making the initial particle size controllable within 60.4 nm–3.85 μm, and controlling the dispersion time within 2–144 h which is feasible to accommodate reservoirs with different permeability. After the aggregation of precipitated particles, the final particle size of aggregates exceeded 70 μm, which could effectively block high-permeability channels and achieve deep fluid flow steering. The profile control and displacement system was tested in the P8 injection and production well group of an oilfield in the South China Sea. The salinity of injected water in this well group was 34 g/L, and the average injection pressure increased 2.9 MPa after 192 days of continuous injection of the precipitated particle profile control and displacement system. The water cut of the two affected wells was reduced by 4.6 and 17.8 percentage points, respectively, resulting in a cumulative oil gain of over 6 200 m3,with a valid period longer than 4 months. The research and field test show that the designed precipitated particle profile control and displacement system can solve the problem of poor profile control and displacement effects in oilfields with high salinity of injected water and provide technical support for oilfields with high salinity of injected water.

  • 图  1   分散剂作用机理示意

    Figure  1.   Action mechanism of dispersant

    图  2   不同时刻的分散形态

    Figure  2.   Dispersion forms at different time

    图  3   不同配方沉淀粒子体系的初始粒径分布

    Figure  3.   Initial particle size distribution of precipitated particle system with different formulations

    图  4   岩心驱替设备示意

    Figure  4.   Core displacement equipment

    图  5   不同配方沉淀粒子体系注入压力与注入量的关系

    Figure  5.   Relationship between injection pressure and injection rate of precipitated particle system with different formulations

    图  6   注入压力、含水率和最终采收率与注入量的关系

    Figure  6.   Relationship among injection pressure, water cut, final recovery, and injection rate

    图  7   P8井深部调驱注入曲线

    Figure  7.   Injection curve of deep profile control and displacement of Well P8

    表  1   不同配方沉淀粒子体系的初始粒径与分散时间

    Table  1   Initial particle size and dispersion time of precipitated particle system with different formulations

    配方 试剂质量浓度/(mg·L−1 Ca2+、Mg2+质量浓度/
    (mg·L−1
    d50/nm 分散时间/h
    硅酸钠 分散剂 初始状态 完全沉淀后
    1 1 500 0 1 783 4 870.0 72 800 不稳定
    2 100 3 850.0 70 980 1~2
    3 300 529.0 74 700 12~24
    4 500 464.0 72 200 12~24
    5 1 000 88.7 71 200 72~96
    6 1 500 73.9 74 200 96~120
    7 2 500 60.8 71 400 120~144
    8 3 000 60.4 76 100 120~144
    下载: 导出CSV

    表  2   不同配方沉淀粒子体系的Zeta 电位

    Table  2   Zeta potential of precipitated particle system with different formulations

    配方 硅酸钠质量
    浓度/(mg·L−1
    分散剂质量
    浓度/(mg·L−1
    pH值 Zeta电位/mV
    9 300 20 7~8 −6.6
    10 50 7~8 −10.8
    11 100 8~9 −15.7
    12 150 8~9 −26.3
    13 200 8~9 −38.4
    14 300 9~10 −44.5
    15 500 9~10 −57.3
    16 600 9~10 −58.8
    下载: 导出CSV

    表  3   不同配方沉淀粒子体系的阻力系数和残余阻力系数

    Table  3   Resistance coefficient and residual resistance coefficient of precipitated particle system with different formulations

    配方 试剂质量浓度/(mg·L−1 Ca2+、Mg2+质量
    浓度/(mg·L−1
    初始粒径/nm 岩心渗透率/mD 阻力系数 残余阻力系数
    硅酸钠 分散剂
    1 1 500 0 1 783 4 870.0 260
    500
    1000
    4 500 464.0 260 3.07 1.00
    500 2.57 2.71
    1 000 2.50 2.52
    6 1 500 73.9 260 2.07 2.53
    500 1.85 2.38
    1 000 1.50 2.33
    8 3 000 60.4 260 1.53 1.73
    500 1.43 1.50
    1 000 1.24 1.24
    下载: 导出CSV

    表  4   不同配方沉淀粒子体系驱替试验结果

    Table  4   Displacement experiment results of precipitated particle system with different formulations

    配方试剂质量浓度/
    (mg·L−1
    含油饱和度,%采收率,%
    硅酸钠分散剂水驱沉淀粒子驱后续水驱
    51 5001 00088.721.96.215.1
    83 00060.422.64.718.3
    下载: 导出CSV

    表  5   受效井措施前后的生产情况

    Table  5   Production effects of affected wells before and after measure implementation

    受益井措施后见效时间/d日产液量/m3日产油量/m3含水率,%措施后累计增油量/m3
    措施前措施后措施前措施后措施前措施后
    P1井56116.9112.722.831.978.674.02 069.2
    P2井38117.1114.020.539.082.564.74 177.5
    下载: 导出CSV
  • [1] 朱怀江,孙尚如,罗健辉,等. 南阳油田驱油用聚合物的水动力学半径研究[J]. 石油钻采工艺,2005,27(6):47–50. doi: 10.3969/j.issn.1000-7393.2005.06.015

    ZHU Huaijiang, SUN Shangru, LUO Jianhui, et al. Research on hydrodynamic radius of polymer molecule for oil displacement in Nanyang Oilfield[J]. Oil Drilling & Production Technology, 2005, 27(6): 47–50. doi: 10.3969/j.issn.1000-7393.2005.06.015

    [2] 钟万有,赵波,韩世寰,等. 高温高矿化度油藏深部调驱体系性能评价及应用[J]. 油田化学,2020,37(1):29–34.

    ZHONG Wanyou, ZHAO Bo, HAN Shihuan, et al. Performance evaluation and application of deep oil displacement system in high temperature and high salinity reservoir[J]. Oilfield Chemistry, 2020, 37(1): 29–34.

    [3] 郭娜,梁珂,李亮,等. 塔河油田耐温抗盐驱油聚合物的筛选及性能评价[J]. 石油钻采工艺,2020,42(2):222–226.

    GUO Na, LIANG Ke, LI Liang, et al. Screening and performance evaluation on temperature tolerant and salinity resistant polymer used in the Tahe Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 222–226.

    [4] 石静,曹绪龙,王红艳,等. 胜利油田高温高盐稠油油藏复合驱技术[J]. 特种油气藏,2018,25(4):129–133. doi: 10.3969/j.issn.1006-6535.2018.04.026

    SHI Jing, CAO Xulong, WANG Hongyan, et al. Combination flooding technology used in high-temperature, high-salinity heavy oil reservoirs of Shengli Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 129–133. doi: 10.3969/j.issn.1006-6535.2018.04.026

    [5] 李吉,王江,吴文祥,等. 新型表面活性聚合物驱油剂的研制及应用[J]. 断块油气田,2020,27(6):803–807.

    LI Ji, WANG Jiang, WU Wenxiang, et al. Development and application of novel surface-active polymer flooding agent [J]. Fault-Block Oil & Gas Field, 2020, 27(6): 803–807.

    [6] 李亮,方俊伟,彭博一,等. 塔河油田碳酸盐岩储层中聚合物凝胶堵漏技术[J]. 钻井液与完井液,2024,41(4):437–443.

    LI Liang, FANG Junwei, PENG Boyi, et al. Control mud losses into carbonate reservoirs with polymer gels in Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2024, 41(4): 437–443.

    [7] 刘学伟. 耐温抗盐型高效聚合物驱油剂的研制及应用[J]. 断块油气田,2020,27(4):474–477.

    LIU Xuewei. Development and application of high efficiency polymer flooding agent with temperature and salt resistance[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 474–477.

    [8] 贾志伟,程长坤,朱秀雨,等. 青海油田尕斯 N1–N21超高盐油藏复合驱提高采收率技术[J]. 石油钻探技术,2021,49(5):81–87.

    JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, et al. Oil recovery enhancement by composite flooding technology for Gasi N1–N21 ultra-high-salinity reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81–87.

    [9] 廖月敏,付美龙,杨松林. 耐温抗盐凝胶堵水调剖体系的研究与应用[J]. 特种油气藏,2019,26(1):159–162.

    LIAO Yuemin, FU Meilong, YANG Songlin. Study and application of water plugging and profile control system of heat and salt resistant gel[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 159–162.

    [10] 曹伟佳, 卢祥国, 闫冬, 等. 海上油田深部调剖组合方式实验优选[J]. 中国海上油气,2018,30(5):103–108.

    CAO Weijia, LU Xiangguo, YAN Dong, et al. Experimental optimization of deep profile control combination in offshore oilfields[J]. China Offshore Oil and Gas, 2018, 30(5): 103–108.

    [11] 殷慧,柳华杰,安朝峰,等. 水玻璃复合堵漏体系中氯化钙控释技术[J]. 钻井液与完井液,2024,41(2):239–245. doi: 10.12358/j.issn.1001-5620.2024.02.014

    YIN Hui, LIU Huajie, AN Chaofeng, et al. Controlled release of calcium chloride from compounded waterglass-calcium chloride lost circulation material[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 239–245. doi: 10.12358/j.issn.1001-5620.2024.02.014

    [12] 赵彧,张桂意,崔洁,等. 无机凝胶调剖剂的研制及应用[J]. 特种油气藏,2006,13(3):86–88. doi: 10.3969/j.issn.1006-6535.2006.03.028

    ZHAO Yu, ZHANG Guiyi, CUI Jie, et al. Development and application of inorganic gel profile control agent[J]. Special Oil & Gas Reservoirs, 2006, 13(3): 86–88. doi: 10.3969/j.issn.1006-6535.2006.03.028

    [13] 刘巍. 水溶性硅酸盐堵剂研究[D]. 青岛:中国石油大学(华东),2008.

    LIU Wei. Research on water shut-off agents of soluble silicates[D]. Qingdao: China University of Petroleum(East China), 2008.

    [14] 李晓峰. 姬塬油田低渗透油藏堵水调剖技术完善[D]. 西安:西安石油大学,2015.

    LI Xiaofeng. Jiyuan Oilfield low permeability reservoir water shutoff profile improvement[D]. Xi’an: Xi’an Shiyou University, 2015.

    [15] 巴文轩,王正良,王昌军. 抗高温复合凝胶堵漏剂的研究[J]. 钻井液与完井液,2021,38(6):728–731.

    BA Wenxuan, WANG Zhengliang, WANG Changjun. Study on high temperature resistant compound gel plugging agent[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 728–731.

    [16] 黎凌,卫俊佚,张谦. 用于精细控压钻井的无机凝胶隔离塞的研制及现场试验[J]. 石油钻探技术,2019,47(1):45–51.

    LI Ling, WEI Junyi, ZHANG Qian. Development and field testing of a gel Isolation plug for precise managed pressure drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 45–51.

    [17] 侯雅琦,沈敬尧,易达,等. 异丙基丙烯酰胺水凝胶纳米微球粒径的控制及其对多肽吸附的影响[J]. 化工学报,2020,71(增刊2):267–272.

    HOU Yaqi, SHEN Jingyao, YI Da, et al. Influences on diameter of isopropylacrylamide hydrogel nanoparticles and its effect on peptide affinity[J]. CIESC Journal, 2020, 71(supplement 2): 267–272.

    [18] 郑皓华,邓雅洁,吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报,2022,36(19):21110079.

    ZHENG Haohua, DENG Yajie, WU Zhilin. Research on surface modification technology of nano packaging materials and packaging morphological expressions[J]. Materials Reports, 2022, 36(19): 21110079.

    [19] 吴彤,叶建东. 超分散剂在制备α-Al2O3悬浮浆料中的应用研究[J]. 耐火材料,2018,52(4):292–295.

    WU Tong, YE Jiandong. Application of hyperdispersant in preparation of α-Al2O3 suspension slurry[J]. Refractories, 2018, 52(4): 292–295.

    [20] 钱春霞,何权辉,赵朋,等. 液体分散染料的制备及分散剂的选择[J]. 染料与染色,2021,58(5):43–48.

    QIAN Chunxia, HE Quanhui, ZHAO Peng, et al. Preparation of liquid disperse dyes and the dispersants used[J]. Dyestuffs and Coloration, 2021, 58(5): 43–48.

    [21] 孙霞,薛韬,余彩莉,等. 聚醚胺改性聚苯乙烯马来酸酐超分散剂的制备及其在分散TiO2中的应用[J]. 涂料工业,2024,54(5):39–44. doi: 10.12020/j.issn.0253-4312.2023-279

    SUN Xia, XUE Tao, YU Caili, et al. Preparation of polyetheramine modified styrene-maleic anhydride hyperdispersant and its application in TiO2 dispersion[J]. Paint & Coatings Industry, 2024, 54(5): 39–44. doi: 10.12020/j.issn.0253-4312.2023-279

    [22] 邵雪峰. 异形TiO2粒子间空位作用下混合纳米悬浮液的分散稳定性[D]. 广州:广东工业大学,2016.

    SHAO Xuefeng. Dispersion stability of hybrid nanosuspension containing differently shaped TiO2 nanoparticles under depletion interaction[D]. Guangzhou: Guangdong University of Technology, 2016.

    [23] 景希玮,公维光,冯中军,等. 梳型聚合物超分散剂的合成及其在有机介质中分散CaCO3的研究[J]. 华东理工大学学报(自然科学版),2017,43(6):777–783.

    JING Xiwei, GONG Weiguang, FENG Zhongjun, et al. Synthesis of comb-like copolymer dispersant for dispersing CaCO3 in organic medium[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2017, 43(6): 777–783.

    [24] 刘志成. 固液界面间离子液体的双电层结构与力学特性研究[D]. 南京:东南大学,2018.

    LIU Zhicheng. Research on electrical double-layer structure and mechanical properties of ionic liquids at solid-liquid interface[D]. Nanjing: Southeast University, 2018.

    [25] 庄占兴,路福绥,郭雯婷,等. 界面吸附理论与农药悬浮剂加工[J]. 山东化工,2018,47(12):60–62. doi: 10.3969/j.issn.1008-021X.2018.12.024

    ZHUANG Zhanxing, LU Fusui, GUO Wenting, et al. Interface adsorption and processing of pesticide suspension concentrate[J]. Shandong Chemical Industry, 2018, 47(12): 60–62. doi: 10.3969/j.issn.1008-021X.2018.12.024

    [26] 刘明. 几种典型水溶液分散体系的Zeta电位及其稳定性研究[D]. 武汉:武汉理工大学,2010.

    LIU Ming. Study on the Zeta potential and stability of several typical dispersion systems[D]. Wuhan: Wuhan University of Technology, 2010.

    [27] 张炜. α-Al2O3悬浮液体系稳定性及其失稳絮凝体破碎基础研究[D]. 北京:北京科技大学,2021.

    ZHANG Wei. A fundamental study on the stability of α-Al2O3 suspension system and fragmentation of destabilized flocs[D]. Beijing: University of Science and Technology Beijing, 2021.

    [28] 卢祥国,高振环,闫文华. 人造岩心渗透率影响因素试验研究[J]. 大庆石油地质与开发,1994,13(4):53–55.

    LU Xiangguo, GAO Zhenhuan, YAN Wenhua. Experimental study of factors influencing permeability of artificial core[J]. Petroleum Geology & Oilfield Development in Daqing, 1994, 13(4): 53–55.

  • 期刊类型引用(7)

    1. 孟庆修,曹自成,丁文龙,杨德彬,马海陇,刁新东,王明,韩鹏远,王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律. 地学前缘. 2024(05): 247-262 . 百度学术
    2. 韩刚,何峰,张孝珍,王立华,祝彦贺,雷克辉. 阵列声波测井在储层裂缝识别中的应用——以鄂尔多斯盆地K区为例. 油气地质与采收率. 2019(03): 63-69 . 百度学术
    3. 黄玉欣,胡望水,尹帅. 基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法. 石油钻探技术. 2018(05): 115-120 . 本站查看
    4. 周冬林,杨海军,李建君,王晓刚,汪会盟,薛雨. 盐岩地层地应力测试方法. 油气储运. 2017(12): 1385-1390 . 百度学术
    5. 尹帅,丁文龙,李昂,赵金利,单钰铭. 裂缝对致密碎屑岩储层弹性影响的数值分析. 石油钻探技术. 2016(02): 112-118 . 本站查看
    6. 尹帅,丁文龙,刘建军,王鹏,孙圆辉,曹翔宇,王兴华. 沁水盆地南部地区山西组煤系地层裂缝发育特征及其与含气性关系. 天然气地球科学. 2016(10): 1855-1868 . 百度学术
    7. 张俊,周文,李双贵,单钰铭,尹帅,谢润成,郑莲慧. 高应力条件下膏泥岩动静态力学参数特征试验分析. 成都理工大学学报(自然科学版). 2015(06): 665-672 . 百度学术

    其他类型引用(2)

图(7)  /  表(5)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2025-01-05
  • 网络出版日期:  2025-01-21
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回