南川页岩气田压裂工艺改进及应用

周成香, 房大志, 王旭, 李成赢, 王志峰

周成香,房大志,王旭,等. 南川页岩气田压裂工艺改进及应用[J]. 石油钻探技术,2025,53(2):1−10. DOI: 10.11911/syztjs.2025010
引用本文: 周成香,房大志,王旭,等. 南川页岩气田压裂工艺改进及应用[J]. 石油钻探技术,2025,53(2):1−10. DOI: 10.11911/syztjs.2025010
ZHOU Chengxiang, FANG Dazhi, WANG Xu, et al. Improvement and application of fracturing technology in the Nanchuan Shale Gas Field [J]. Petroleum Drilling Techniques, 2025, 53(2):1−10. DOI: 10.11911/syztjs.2025010
Citation: ZHOU Chengxiang, FANG Dazhi, WANG Xu, et al. Improvement and application of fracturing technology in the Nanchuan Shale Gas Field [J]. Petroleum Drilling Techniques, 2025, 53(2):1−10. DOI: 10.11911/syztjs.2025010

南川页岩气田压裂工艺改进及应用

基金项目: 中国石化科技攻关项目“常压页岩气效益开发技术政策优化研究”(编号:P21087-4)、“渝东南地区浅层页岩气勘探开发关键技术”(编号:P24115)资助。
详细信息
    作者简介:

    周成香(1985—),湖北老河口人,2009年毕业于长江大学石油工程专业,2016年获中国石油大学(北京)石油与天然气工程专业硕士学位,主要从事页岩气勘探开发方面的研究工作。E-mail:278738690@qq.com

  • 中图分类号: TE357.1+3

Improvement and Application of Fracturing Technology in the Nanchuan Shale Gas Field

  • 摘要:

    页岩储层因具有低孔隙度和特低渗透性,必须经过大规模体积压裂改造形成人工缝网。南川页岩气田开发目前已经形成相对完善的压裂工艺技术体系,但随着甜点储量规模化生产,亟需深入研究并进一步改进压裂工艺。从南川页岩气田不同井网储量动用、射孔方式、投球暂堵、加砂模式等方面提出了页岩气压裂工艺改进思路和方法,并通过现场应用效果评价了改进工艺的可行性。系统总结了压裂工艺改进措施:鉴于井网关系和开发目标的差异,对不同类型井组的压裂改造区域进行差异化控制;超深穿透射孔方式的应用对深层高应力页岩储层压裂提供了重要的工艺基础,满足了电动压裂设备数量和压力等级的限制;借鉴重复压裂以及加密井压裂工艺中的投球暂堵技术,优化了投球数量与时机,抑制了主裂缝过度延伸;精细化压裂,支撑剂体系趋于完善,形成了“初始小粒径远输前缘铺置+中段中粒径主流通道支撑+尾段大粒径缝口收尾”三级连续加砂模式。改进后的压裂工艺现场应用效果显著,在统计的现场投球暂堵中,封堵有效率近79.8%。在超深穿透工艺下,为更多加砂和注液提供了压力窗口。提高了加砂强度和小粒径占比,显著提升了裂缝的导流能力和支撑效果,压后日产气量从3.30×104 m3提至8.46×104 m3。研究结果表明,通过综合应用差异化压裂设计、超深穿透射孔技术、优化投球暂堵以及精细化三级加砂模式,可显著提升南川页岩气田的压裂改造效果和经济效益,为南川页岩气田有效开发提供了技术保障。

    Abstract:

    Due to the low porosity and extremely low permeability of shale reservoirs, they must undergo large-scale volume fracturing to create an artificial fracture network. The development of the Nanchuan normal pressure shale gas has already formed a relatively mature fracturing technology system. However, with the scale production of sweet spot reserves, there is an urgent need for in-depth research and further improvement of fracturing technology. This paper proposes improvement ideas and methods for the hydraulic fracturing process of the Nanchuan shale gas field, including the utilization of reserves in different well networks, perforation methods, temporary plugging with ball-injection, and sanding modes. The feasibility of these improvements is evaluated through on-site application effects assessment. The feasibility of the improved technology is evaluated through on-site application results. Differential control of fracturing and transformation areas for different types of well groups, considering variations in well network relationships and development objectives. The application of ultra-deep penetration perforation provides a crucial technological foundation for fracturing in deep, high-stress shale reservoirs, meeting limitations on the number of electric fracturing devices and pressure levels. Borrowing techniques from repeat fracturing and balling during tight well fracturing processes, optimizing the quantity and timing of balling to suppress excessive extension of the main fracture. Fine-tuning the fracturing process and optimizing the proppant system, leading to a well-developed three-level continuous sanding model: "initial small particle size long-distance transport front-end placement + mid-section medium particle size main flow channel support + tail-section large particle size fracture mouth closure." The improved hydraulic fracturing process has shown significant on-site application effects. In the statistically analyzed on-site temporary plugging with ball-injection, the effective plugging rate is close to 79.8%. Under the ultra-deep penetration technique, it has provided a pressure window for more sanding and fluid injection. Increasing the sanding intensity and the proportion of fine particles has significantly enhanced the fracture conductivity and support effect. As a result, the daily production after fracturing has increased from 33,000 cubic meters to 84,600 cubic meters. Studies have shown that the integrated application of differentiated fracturing design, ultra-deep penetration perforation technology, optimized temporary blocking with ball injection, and a refined three-stage sand addition model can significantly enhance the fracturing performance and economic benefits of the Nanchuan Shale Gas Field. This provides strong technical support for the efficient development of the field

  • 图  1   不同改造强度下邻井套压升幅

    Figure  1.   Increase in pressure in the proximal well set under different reforming intensities

    图  2   缝网与生产压力模拟(15年)结果

    Figure  2.   Simulation of crack networks and production pressure (15 years)

    图  3   加密井开发归一化生产曲线

    Figure  3.   Normalized production curve for three-dimensional development of encrypted wells

    图  4   不同加砂强度下的缝网模拟结果

    Figure  4.   Simulation of fracture network under different proppant intensities

    图  5   缝网属性与改造规模的关系

    Figure  5.   Relationship between fracture network properties and modification scale

    图  6   DFN模型切片和微地震事件分布

    Figure  6.   Microseismic event distribution

    图  7   破裂压力与射孔深度的关系曲线

    Figure  7.   Curve of hydraulic fracturing pressure variation with perforation depth

    图  8   射孔弹穿深试验井段压裂施工曲线

    Figure  8.   Perforation penetration depth experiment well segment hydraulic fracturing construction curve

    图  9   不同球径暂堵球的升压情况对比

    Figure  9.   Comparison of initiation pressure for temporary plugging balls with different diameters

    图  10   不同球孔比暂堵球的升压情况对比

    Figure  10.   Comparison of initiation pressure for temporary plugging balls with different ball-to-hole ratios

    图  11   不同投球时机下暂堵球的升压情况对比

    Figure  11.   Comparison of initiation pressure for temporary plugging balls at different ball injection timings

    图  12   井段微地震事件分布

    Figure  12.   Distribution of microseismic events in well segment

    图  13   南川页岩气田平均加砂强度变化

    Figure  13.   Variation of average proppant intensity in Nanchuan shale gas field

    图  14   部分应用井投球暂堵起压情况统计结果

    Figure  14.   Statistical analysis of initiation pressure for temporary plugging during ball injection

    表  1   层段矿物组成与力学参数

    Table  1   The mineral composition and mechanical parameters of the stratum

    井段 埋深/m 层位 小层 含量,% 弹性
    模量/MPa
    泊松比 水平主应力/MPa
    硅质 钙质 泥质 石英 碳酸盐 最小 最大
    SY1−1−3 4 314 五峰组—龙马溪组 55.5 2.0 22.7 35.44 10.74 58.30 0.150 90.19 102.82
    SY1−2−7 4 407 五峰组—龙马溪组 48.1 8.4 32.4 39.36 7.46 54.22 0.158 89.93 102.16
    SY1−3−6 4 464 五峰组—龙马溪组 48.7 14.3 24.8 45.30 6.90 55.06 0.160 91.85 103.45
    SY2−1−5 4 392 五峰组—龙马溪组 44.0 6.5 34.9 50.01 7.83 56.78 0.165 90.52 101.96
    SY2−2−4 4 412 五峰组—龙马溪组 46.8 7.7 30.1 50.41 5.10 50.32 0.165 90.33 102.52
    SY2−3−4 4 388 五峰组—龙马溪组 46.9 11.7 31.0 44.30 16.60 54.36 0.160 89.87 101.19
    下载: 导出CSV

    表  2   微地震监测数据

    Table  2   Microseismic monitoring data statistics

    井号 压裂段 类型 微地震
    事件数量
    M-SRV E-SRV
    SY2HF 1~6,8~10,16,18~22 非暂堵 112 297 168
    7,11~15,17,23~32 暂堵 107 313 174
    SY3HF 1~4 非暂堵 75 300 190
    5~27 暂堵 101 422 280
    SY4HF 1~3,5,7,11~15 非暂堵 139 377 203
    4,6,8~10,16~22 暂堵 154 480 228
    SY7HF 1~4,9~14,20,21,24~26 非暂堵 85 261 127
    5~8,15~19,22,23 暂堵 94 296 143
    下载: 导出CSV

    表  3   部分应用井的压裂施工参数

    Table  3   Parameters of fracturing construction

    工艺 井号 井组 储层埋深/
    m
    平均段长/
    m
    射孔类型 暂堵类型 加砂强度/
    (m3∙m−1
    注液强度/
    (m3∙m−1
    小粒径
    占比,%
    稳定测试产量/
    (104m3∙d−1
    常规 SY14−8HF井 加密井 3 352 99 常规射孔 无暂堵 1.31 27.24 38 3.30
    投球暂堵 SY14−6HF井 加密井 3 363 105 常规射孔 投球暂堵 1.23 25.91 33 6.23
    SY14−7HF井 加密井 3 443 109 常规射孔 投球暂堵 1.17 23.94 33 6.30
    深穿透+中等加砂+
    小粒径高占比
    SY35−1HF井 加密井 4 202 84 深穿透 无暂堵 2.05 20.14 76 8.20
    SY35−2HF井 加密井 4 071 79 深穿透 无暂堵 2.02 20.42 82 6.71
    SY35−3HF井 加密井 3 973 85 深穿透 无暂堵 2.04 20.44 74 8.46
    SY35−4HF井 加密井 3 834 87 深穿透 无暂堵 2.08 21.59 79 8.40
    超深穿透+中等加砂+
    小粒径高占比
    SY36−1HF井 加密井 4 294 86 超深穿透 无暂堵 2.19 26.04 79 7.80
    SY36−2HF井 加密井 4 185 72 超深穿透 无暂堵 2.22 28.40 89 7.88
    SY36−4HF井 加密井 4 093 85 超深穿透 无暂堵 2.20 22.31 75 7.64
    投球暂堵+高液强砂 SY4−1HF井 扩边井 2 031 92 常规射孔 投球暂堵 4.51 33.12 15 9.76
    SY4−3HF井 扩边井 1 914 114 常规射孔 投球暂堵 4.02 35.06 34 9.30
    SY4−4HF井 扩边井 1 869 66 常规射孔 投球暂堵 3.93 31.91 35 8.60
    下载: 导出CSV
  • [1] 聂海宽,党伟,张珂,等. 中国页岩气研究与发展20年:回顾与展望[J]. 天然气工业,2024,44(3):20–52.

    NIE Haikuan, DANG Wei, ZHANG Ke, et al. Two decades of shale gas research & development in China: Review and prospects[J]. Natural Gas Industry, 2024, 44(3): 20–52.

    [2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14.

    ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1–14.

    [3] 王光付,李凤霞,王海波,等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质,2023,44(6):1378–1392. doi: 10.11743/ogg20230604

    WANG Guangfu, LI Fengxia, WANG Haibo, et al. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1378–1392. doi: 10.11743/ogg20230604

    [4] 易良平,杨长鑫,杨兆中,等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(10):84–97. doi: 10.3787/j.issn.1000-0976.2022.10.008

    YI Liangping, YANG Changxin, YANG Zhaozhong, et al. Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84–97. doi: 10.3787/j.issn.1000-0976.2022.10.008

    [5] 何希鹏,何贵松,高玉巧,等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业,2023,43(6):1–14.

    HE Xipeng, HE Guisong, GAO Yuqiao, et al. Progress in and research direction of key technologies for normal-pressure shale gas exploration and development[J]. Natural Gas Industry, 2023, 43(6): 1–14.

    [6] 姚红生,王伟,何希鹏,等. 南川复杂构造带常压页岩气地质工程一体化开发实践[J]. 油气藏评价与开发,2023,13(5):537–547.

    YAO Hongsheng, WANG Wei, HE Xipeng, et al. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537–547.

    [7] 姚红生,房启龙,袁明进,等. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向[J]. 石油实验地质,2023,45(6):1132–1142. doi: 10.11781/sysydz2023061132

    YAO Hongsheng, FANG Qilong, YUAN Mingjin, et al. Progress of normal-pressure shale gas engineering technology in southeast Chongqing and the research direction of next steps[J]. Petroleum Geology and Experiment, 2023, 45(6): 1132–1142. doi: 10.11781/sysydz2023061132

    [8] 倪锋,朱峰,孟庆利. 渝东南地区南川区块膝折构造模式解析[J]. 油气藏评价与开发,2024,14(3):373–381.

    NI Feng, ZHU Feng, MENG Qingli. Analysis of knee fold structure model in Nanchuan Block of southeastern Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 373–381.

    [9] 张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究[J]. 石油钻探技术,2023,51(5):149–155.

    ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir[J]. Petroleum Drilling Techniques, 2023, 51(5): 149–155.

    [10] 周博成,熊炜,赖建林,等. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术,2022,50(3):80–85.

    ZHOU Bocheng, XIONG Wei, LAI Jianlin, et al. Low-cost fracturing technology in normal-pressure shale gas reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80–85.

    [11] 李龙,陈显举,彭安钰,等. 贵州正安地区常压页岩气压裂关键技术[J]. 钻探工程,2022,49(5):189–193.

    LI Long, CHEN Xianju, PENG Anyu, et al. Key technologies for hydraulic fracturing of normal pressure shale gas in the Zheng'an area of Guizhou[J]. Drilling Engineering, 2022, 49(5): 189–193.

    [12] 刘洪,廖如刚,李小斌,等. 页岩气 “井工厂” 不同压裂模式下裂缝复杂程度研究[J]. 天然气工业,2018,38(12):70–76.

    LIU Hong, LIAO Rugang, LI Xiaobin, et al. A comparative analysis on the fracture complexity in different fracking patterns of shale gas “well factory”[J]. Natural Gas Industry, 2018, 38(12): 70–76.

    [13] 何希鹏,张培先,任建华,等. 渝东南南川地区东胜构造带常压页岩气勘探开发实践[J]. 石油实验地质,2023,45(6):1057–1066.

    HE Xipeng, ZHANG Peixian, REN Jianhua, et al. Exploration and development practice of normal pressure shale gas in Dongsheng structural belt, Nanchuan area, southeast Chongqing[J]. Petroleum Geology and Experiment, 2023, 45(6): 1057–1066.

    [14] 蒋恕,李园平,杜凤双,等. 提高页岩气藏压裂井射孔簇产气率的技术进展[J]. 油气藏评价与开发,2023,13(1):9–22.

    JIANG Shu, LI Yuanping, DU Fengshuang, et al. Recent advancement for improving gas production rate from perforated clusters in fractured shale gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 9–22.

    [15] 郭建春,路千里,刘壮,等. “多尺度高密度”压裂技术理念与关键技术:以川西地区致密砂岩气为例[J]. 天然气工业,2023,43(2):67–76.

    GUO Jianchun, LU Qianli, LIU Zhuang, et al. Concept and key technology of “multi-scale high-density” fracturing technology: a case study of tight sandstone gas reservoirs in the western Sichuan Basin[J]. Natural Gas Industry, 2023, 43(2): 67–76.

    [16] 刘善勇,尹彪,楼一珊,等. 粗糙裂缝内支撑剂运移与展布规律数值模拟[J]. 石油钻探技术,2024,52(4):104–109.

    LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures[J]. Petroleum Drilling Techniques, 2024, 52(4): 104–109.

    [17] 唐堂,郭建春,翁定为,等. 基于PIV/PTV的平板裂缝支撑剂输送试验研究[J]. 石油钻探技术,2023,51(5):121–129.

    TANG Tang, GUO Jianchun, WENG Dingwei, et al. Experimental study of proppant transport in flat fracture based on PIV/PTV[J]. Petroleum Drilling Techniques, 2023, 51(5): 121–129.

    [18] 刘建坤,蒋廷学,卞晓冰,等. 常压页岩气低成本高效压裂技术对策[J]. 钻井液与完井液,2020,37(3):377–383.

    LIU Jiankun, JIANG Tingxue, BIAN Xiaobing, et al. The countermeasure of low cost and high efficiency fracturing technology of normal pressure shale gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 377–383.

    [19]

    TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook[M]. 3rd ed. New York: ASME Press, 2000.

    [20]

    HSU Y C. The infinite sheet with two radial cracks from cylindrical hole under inclined tension or in-plane shear[J]. International Journal of Fracture, 1977, 13(6): 839–845. doi: 10.1007/BF00034326

    [21] 唐世斌,刘向君,罗江,等. 水压诱发裂缝拉伸与剪切破裂的理论模型研究[J]. 岩石力学与工程学报,2017,36(9):2124–2135.

    TANG Shibin, LIU Xiangjun, LUO Jiang, et al. Theoretical model for tensile and shear crack initiation at the crack tip in rock subjected to hydraulic pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2124–2135.

    [22] 唐世斌,张恒. 基于最大周向拉应变断裂准则的岩石裂纹水力压裂研究[J]. 岩石力学与工程学报,2016,35(增刊1):2710–2719.

    TANG Shibin, ZHANG Heng. Hydraulic fracture prediction theory based on the maximum tangential strain criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(supplement 1): 2710–2719.

    [23] 刘明明,马收,刘立之,等. 页岩气水平井压裂施工中暂堵球封堵效果研究[J]. 钻采工艺,2020,43(6):44–48.

    LIU Mingming, MA Shou, LIU Lizhi, et al. Study on the effect of temporary plugging ball in fracturing of horizontal shale gas well[J]. Drilling & Production Technology, 2020, 43(6): 44–48.

    [24] 郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183. doi: 10.11911/syztjs.2023039

    GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances and development suggestions of temporary plugging and diverting fracturing technology for shale gas reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183. doi: 10.11911/syztjs.2023039

    [25] 吕振虎,吕蓓,罗垚,等. 基于光纤监测的段内多簇暂堵方案优化[J]. 石油钻探技术,2024,52(1):114–121.

    LYU Zhenhu, LYU Bei, LUO Yao, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring[J]. Petroleum Drilling Techniques, 2024, 52(1): 114–121.

    [26] 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191. doi: 10.11911/syztjs.2023023

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reser-voirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191. doi: 10.11911/syztjs.2023023

    [27] 吴峙颖,路保平,胡亚斐,等. 压裂多级裂缝内动态输砂物理模拟实验研究[J]. 石油钻探技术,2020,48(4):106–110.

    WU Shiying, LU Baoping, HU Yafei, et al. Experimental study on the physical simulation of dynamic sand transport in multi-stage fractures[J]. Petroleum Drilling Techniques, 2020, 48(4): 106–110.

    [28] 任洪达,董景锋,高靓,等. 新疆油田玛湖砂岩储层自悬浮支撑剂现场试验[J]. 油气藏评价与开发,2023,13(4):513–518.

    REN Hongda, DONG Jingfeng, GAO Jing, et al. Field test of self-suspending proppant at Mahu sandstone reservoir in Xinjiang Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 513–518.

    [29] 郭建春,路千里,何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业,2022,42(8):148–161.

    GUO Jianchun, LU Qianli, HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry, 2022, 42(8): 148–161.

    [30] 杨兆中,袁健峰,张景强,等. 四川盆地海相页岩水平井压裂裂缝研究进展及认识[J]. 油气藏评价与开发,2024,14(4):600–609.

    YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, et al. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600–609.

  • 期刊类型引用(10)

    1. 温晓松,柳贡慧,李军,郭雪利. 恒扭矩工具组合式非标碟簧试验与数值分析. 科学技术与工程. 2021(25): 10670-10679 . 百度学术
    2. 田峥,秦世利,游尧,陈斌,田波. 古潜山巨厚花岗岩地层综合提速与配套工艺技术研究. 中国石油和化工标准与质量. 2021(16): 156-158+160 . 百度学术
    3. 温晓松,柳贡慧,王烊,李军,李汉兴. 石油钻井中非标碟簧优选设计及力学性能研究. 石油机械. 2020(06): 9-17 . 百度学术
    4. 刘为民. 深井钻井井下抗制动工具数值仿真与试验. 长江大学学报(自然科学版). 2020(06): 62-67 . 百度学术
    5. 曹继飞,田京燕,张辉. 弱胶结砂砾岩地层钻头研制及提速工具配套研究. 探矿工程(岩土钻掘工程). 2019(04): 88-91 . 百度学术
    6. 查春青,柳贡慧,李军,席岩,汪伟. PDC钻头扭转振动减振工具设计及现场应用. 特种油气藏. 2019(02): 170-174 . 百度学术
    7. 兰凯,刘香峰. 钻柱恶性振动识别与抑制技术研究进展. 吉林大学学报(地球科学版). 2017(01): 203-214 . 百度学术
    8. 吴小雄,朱浩铭,王德贵,余朋伟,邹子由,郗秦阳. 钻井转矩保护器的研制. 机械工程师. 2017(11): 100-101+104 . 百度学术
    9. 梁奇敏,何俊才,张弘,张翼,刘新云. 钻井提速工具经济性预测评价方法. 石油钻探技术. 2017(03): 57-61 . 本站查看
    10. 张辉. PDC钻头恒扭矩工具在XING101井的应用. 石油机械. 2015(12): 15-18+24 . 百度学术

    其他类型引用(1)

图(14)  /  表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2025-01-11
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回