Improvement and Application of Fracturing Technology in the Nanchuan Shale Gas Field
-
摘要:
页岩储层因具有低孔隙度和特低渗透性,必须经过大规模体积压裂改造形成人工缝网。南川页岩气田开发目前已经形成相对完善的压裂工艺技术体系,但随着甜点储量规模化生产,亟需深入研究并进一步改进压裂工艺。从南川页岩气田不同井网储量动用、射孔方式、投球暂堵、加砂模式等方面提出了页岩气压裂工艺改进思路和方法,并通过现场应用效果评价了改进工艺的可行性。系统总结了压裂工艺改进措施:鉴于井网关系和开发目标的差异,对不同类型井组的压裂改造区域进行差异化控制;超深穿透射孔方式的应用对深层高应力页岩储层压裂提供了重要的工艺基础,满足了电动压裂设备数量和压力等级的限制;借鉴重复压裂以及加密井压裂工艺中的投球暂堵技术,优化了投球数量与时机,抑制了主裂缝过度延伸;精细化压裂,支撑剂体系趋于完善,形成了“初始小粒径远输前缘铺置+中段中粒径主流通道支撑+尾段大粒径缝口收尾”三级连续加砂模式。改进后的压裂工艺现场应用效果显著,在统计的现场投球暂堵中,封堵有效率近79.8%。在超深穿透工艺下,为更多加砂和注液提供了压力窗口。提高了加砂强度和小粒径占比,显著提升了裂缝的导流能力和支撑效果,压后日产气量从3.30×104 m3提至8.46×104 m3。研究结果表明,通过综合应用差异化压裂设计、超深穿透射孔技术、优化投球暂堵以及精细化三级加砂模式,可显著提升南川页岩气田的压裂改造效果和经济效益,为南川页岩气田有效开发提供了技术保障。
Abstract:Due to the low porosity and extremely low permeability of shale reservoirs, they must undergo large-scale volume fracturing to create an artificial fracture network. The development of the Nanchuan normal pressure shale gas has already formed a relatively mature fracturing technology system. However, with the scale production of sweet spot reserves, there is an urgent need for in-depth research and further improvement of fracturing technology. This paper proposes improvement ideas and methods for the hydraulic fracturing process of the Nanchuan shale gas field, including the utilization of reserves in different well networks, perforation methods, temporary plugging with ball-injection, and sanding modes. The feasibility of these improvements is evaluated through on-site application effects assessment. The feasibility of the improved technology is evaluated through on-site application results. Differential control of fracturing and transformation areas for different types of well groups, considering variations in well network relationships and development objectives. The application of ultra-deep penetration perforation provides a crucial technological foundation for fracturing in deep, high-stress shale reservoirs, meeting limitations on the number of electric fracturing devices and pressure levels. Borrowing techniques from repeat fracturing and balling during tight well fracturing processes, optimizing the quantity and timing of balling to suppress excessive extension of the main fracture. Fine-tuning the fracturing process and optimizing the proppant system, leading to a well-developed three-level continuous sanding model: "initial small particle size long-distance transport front-end placement + mid-section medium particle size main flow channel support + tail-section large particle size fracture mouth closure." The improved hydraulic fracturing process has shown significant on-site application effects. In the statistically analyzed on-site temporary plugging with ball-injection, the effective plugging rate is close to 79.8%. Under the ultra-deep penetration technique, it has provided a pressure window for more sanding and fluid injection. Increasing the sanding intensity and the proportion of fine particles has significantly enhanced the fracture conductivity and support effect. As a result, the daily production after fracturing has increased from 33,000 cubic meters to 84,600 cubic meters. Studies have shown that the integrated application of differentiated fracturing design, ultra-deep penetration perforation technology, optimized temporary blocking with ball injection, and a refined three-stage sand addition model can significantly enhance the fracturing performance and economic benefits of the Nanchuan Shale Gas Field. This provides strong technical support for the efficient development of the field
-
现代地质导向钻井过程中,需采用近钻头随钻边界探测技术动态测量近钻头井眼轨迹参数(井斜角、方位角和工具面角),根据随钻成像预估地层和井眼变化趋势,据此调整钻头方向,提高油层钻遇率。由于振动、旋转、磁干扰等因素的影响,导致测量的近钻头井眼轨迹参数出现很大误差,严重影响了随钻测量精度,出现钻穿油层等情况。
目前旋转导向动态测量技术都掌握在国外油田技术服务公司手中,不对外公开,因此,未见到国外有井眼轨迹参数动态测量技术的报道。国内杨全进等人[1]建立了一种旋转导向系统有色噪声的改进无迹卡尔曼滤波方法,该算法限制条件较多。高怡等人[2]提出了采用多源动态姿态组合测量方法测量导向钻具的动态姿态,但加速度计采集数据的存储周期较长,造成测量误差较大。Xue Qilong等人[3-4]提出了基于卡尔曼滤波状态空间模型的动态井眼轨迹测量方法,但其只适用于线性系统。徐宝昌等人[5]提出了基于无迹卡尔曼滤波的动态姿态测量方法,但没有解决振动及旋转对动态姿态测量的影响。为此,笔者提出了一种基于数据融合的近钻头井眼轨迹参数动态测量方法,该方法针对三轴加速度计、磁通门和速率陀螺的测量系统,建立了基于四元数井眼轨迹参数测量模型,推导出加速度计与井眼轨迹平滑预测的关系,运用3个捷联式无迹卡尔曼滤波器和磁干扰校正系对加速度计、磁通门进行消噪,校正,实时测量近钻头井眼轨迹参数,提高随钻近钻头探边能力,确定最佳储层位置。
1. 近钻头动态井眼轨迹测量模型
近钻头动态测量系统由三轴加速度计、三轴磁通门和角速率陀螺仪组成,针对该系统,基于四元数方法建立井眼轨迹非线性数学模型。如图1所示,根据地理坐标系O-NED和钻具坐标系O-xyz的对应关系,建立欧拉角转换矩阵,并转换为四元数,k时刻姿态转换矩阵T表示为:
{\boldsymbol{T}}\left( k \right){{ = }} \left[ \begin{array}{l} {q_{\text{0}}^{\text{2}} + q_{\text{1}}^{\text{2}} - q_{\text{2}}^{\text{2}} - q_{\text{3}}^{\text{2}}}\\ {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{2}}} + {q_{\text{0}}}{q_{\text{3}}}} \right)}\\ {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{3}}} - {q_{\text{0}}}{q_{\text{2}}}} \right)}\end{array} \begin{array}{l} {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{2}}} - {q_{\text{0}}}{q_{\text{3}}}} \right)}\\ {q_{\text{0}}^{\text{2}} - q_{\text{1}}^{\text{2}} + q_{\text{2}}^{\text{2}} - q_{\text{3}}^{\text{2}}}\\ {{\text{2}}\left( {{q_{\text{2}}}{q_{\text{3}}} + {q_{\text{1}}}{q_{\text{0}}}} \right)}\end{array} \begin{array}{l} {{\text{2}}\left( {{q_{\text{1}}}{q_{\text{3}}} + {q_{\text{0}}}{q_{\text{2}}}} \right)} \\ {{\text{2}}\left( {{q_{\text{2}}}{q_{\text{3}}} - {q_{\text{0}}}{q_{\text{1}}}} \right)} \\ {q_{\text{0}}^{\text{2}} - q_{\text{1}}^{\text{2}} - q_{\text{2}}^{\text{2}} + q_{\text{3}}^{\text{2}}} \end{array} \right] (1) 式中:q0,q1,q2和 q3为四元数。
理论上由于x轴和y轴的加速度计、磁通门正交相隔90°,其信号为正弦或余弦曲线。由于钻头旋转、振动的干扰,近钻头x轴和y轴加速度计、磁通门的实测信号如图2所示。由图2可以看出,近钻头的旋转、振动对磁通门的影响相对于加速度计较小,所以采取磁通门读数校正加速度计读数。
\frac{{{B_x}(k + 1)}}{{{B_x}(k)}} = \frac{{{a_x}(k + 1)}}{{{a_x}(k)}} = \frac{{B\sin ({w_x}(k + 1))}}{{B\sin ({w_x}(k))}} = \frac{{g\sin ({w_x}(k + 1))}}{{g\sin ({w_x}(k + 1))}} (2) \frac{{B\sin ({w_y}(k + 1))}}{{B\sin ({w_y}(k))}} = \frac{{g\sin ({w_y}(k + 1))}}{{g\sin ({w_y}(k + 1))}} = \frac{{{B_y}(k + 1)}}{{{B_y}(k)}} = \frac{{{a_y}(k + 1)}}{{{a_y}(k)}} (3) \left[ \begin{gathered} {a_x}(k + 1) \hfill \\ {a_y}(k + 1) \hfill \end{gathered}\right] = \left[ \begin{gathered} \frac{{{B_x}(k + 1)}}{{{B_x}(k)}} \hfill \\ 0 \hfill \\ \end{gathered} \begin{gathered} 0 \hfill \\ \frac{{{B_y}(k + 1)}}{{{B_y}(k)}} \hfill \\ \end{gathered}\right] \left[ \begin{gathered} {a_x}(k) \hfill \\ {a_y}(k) \hfill \\ \end{gathered}\right] (4) 式中:g为重力加速度,m/s2;B为地磁场强度,μT;Bx
\left(k\right) ,By\left(k\right) 和Bz\left(k\right) 为k时刻三轴磁通门测量的磁场强度,μT;ax\left(k\right) ,ay\left(k\right) 和az\left(k\right) 为k时刻三轴加速度计测量结果,m/s2;wx\left(k\right) ,wy\left(k\right) 和wz\left(k\right) 为k时刻陀螺仪的角速度,rad/s。2. 数据融合近钻头井眼轨迹参数动态测量方法
基于数据融合算法的近钻头井眼轨迹参数动态测量方法的测量流程如图3所示,图中KF1和KF2为基于扩展卡尔曼滤波算法的滤波器,KF3为基于无迹卡尔曼滤波算法的滤波器。测量步骤:1)将加速度计、磁通门、转动角速度四元数带入KF1滤波器,进行扩展卡尔曼滤波,得出井斜角、方位角估计值;2)将加速度计四元数带入KF2滤波器,进行扩展卡尔曼滤波,得出测深增量Δhm;3)将测深增量Δhm、井斜角、方位角估计值带入KF3滤波器,进行无迹卡尔曼滤波,得出井斜角、方位角最终估计值;4)利用井斜角、方位角最终估计值计算磁性工具面角ωm与重力工具面角的差Δω;5)利用磁性工具面角和角差Δω求出重力工具面角ωg。
近钻头振动信号是一种幅值大、频率高、频带宽的噪声信号,可以近似等效为高斯白噪声。动态测量的动力学模型为典型的非线性模型。根据z轴陀螺仪测量的转速wz,运用转速补偿策略,对x轴和y轴加速度计测量结果进行转速补偿[5],减小钻具旋转对加速度计测量结果的影响。根据转速补偿结果以及噪声特性,采用扩展、无迹卡尔曼滤波滤除振动干扰信号。
2.1 估计近钻头井斜角、方位角的扩展卡尔曼滤波算法
基于四元数的KF1的状态方程和量测方程:
Q(k + 1) = ({\boldsymbol{I}}{\text{ + }}{t_{\text{s}}}{\boldsymbol{A}}(k))Q(k) + w(k) (5) Z(k + 1) = F(Q(k)) + v(k) (6) 式中:Q(k)为k时刻的状态值;I为单位矩阵;ts为采样周期;w(k)为k时刻系统高斯白噪声;v(k)为k时刻传感器观测噪声;A(k)为k时刻状态转移矩阵;F(x)为非线性函数;Z(k+1)为k+1时刻的观测值。
Z(k + 1) = \left[ \begin{gathered} {B_x} \hfill \\ {B_y} \hfill \\ {B_z} \hfill \\ {a_x} \hfill \\ {a_y} \hfill \\ {a_z} \hfill \\ \end{gathered} \right] = \left[ \begin{array}{l} T(k) \left[ \begin{array}{c} B\cos \theta \hfill \\ 0 \hfill \\ B\sin \theta \hfill \end{array} \right]\\ T(k) \left[\begin{gathered} 0 \hfill \\ 0 \hfill \\ g \hfill \\ \end{gathered} \right] \end{array}\right] + v(k) (7) \begin{split} & Q(k + 1) = \left(I + {t_{\text{s}}} \left[ \begin{array}{c} 0 \hfill \\ {w_x}(k) \hfill \\ {w_y}(k) \hfill \\ {w_z}(k) \hfill \\ \end{array} \begin{array}{c} - {w_x}(k) \hfill \\ 0 \hfill \\ - {w_z}(k) \hfill \\ {w_y}(k) \hfill \\ \end{array} \begin{array}{c} - {w_y}(k) \hfill \\ {w_z}(k) \hfill \\ 0 \hfill \\ - {w_x}(k) \hfill \\ \end{array} \begin{array}{c} - {w_z}(k) \hfill \\ - {w_y}(k) \hfill \\ {w_x}(k) \hfill \\ 0 \hfill \\ \end{array} \right] \right) \cdot \\ & \qquad\qquad Q(k) + w(k)\end{split} (8) 三轴加速度信号、三轴磁通门信号、角速率陀螺信号进行数据融合后,采用扩展卡尔曼滤波算法,得到最优姿态估计[6-7],动态解算出钻井工具的实时姿态参数,确保钻具姿态测量计算的精度,减少计算量,对四元数Q进行更新,求出KF1滤波后的井斜角αKF1、方位角ϕKF1、高边工具面角ωg,KF1和磁性工具面角ωm,KF1。
{\alpha _{{\text{KF}}1}}{\text{ = }}\arctan \frac{{2({q_0}{q_1} + {q_2}{q_3})}}{{1 - 2(q_1^2 + q_2^2)}} (9) {\phi _{{\text{KF}}1}}{\text{ = }}\arctan \frac{{2({q_0}{q_3} + {q_1}{q_2})}}{{1 - 2(q_0^2 + q_3^2)}} (10) {\omega _{{\text{g}},{\text{KF}}1}}{\text{ = }}\arctan \frac{{({q_0}{q_2} + {q_1}{q_3})}}{{({q_0}{q_1} - {q_2}{q_3})}} (11) {\omega _{{\text{m}},{\text{KF}}1}}{{ = }}\arctan \frac{{({q_1}{q_2} + {q_0}{q_3})\cos \theta + ({q_1}{q_2} + {q_0}{q_3})\sin \theta }}{{(q_0^2 - q_1^2 - q_2^2 + q_3^2)\cos \theta + ({q_1}{q_3} - {q_0}{q_2})\sin \theta }} (12) 式中:αKF1,ϕKF1,ωg,KF1和ωm,KF1分别为KF1滤波后的井斜角、方位角、重力工具面角和磁性工具面角,(°);θ为地层倾角,(°)。
2.2 估计近钻头测深增量的扩展卡尔曼滤波算法
根据式(7)计算出四元数中的az,运用扩展卡尔曼滤波器计算系统经过ts后测深增量Δhm。z轴加速度计主要受到重力加速度和振动的干扰,由于采样时间ts为毫秒级,在单位采样周期内,重力加速度和振动的干扰可以视为近似相同[8-10],可以忽略振动对加速度计测量结果的影响。k为当前采样点,z轴加速度增量Δaz:
\Delta {a_z} = {a_z}(k + 1) - g\cos ({\alpha _{{\text{KF1}}}}(k)) (13) \Delta {a_z} = \Delta h_{\text{m}}^{''} (14) 为了提高对测深增量的估计,对Δhm进行二阶泰勒展开:
\Delta {h_{\text{m}}}(k + 1) = \Delta {h_{\text{m}}}(k) + \Delta {h_{\text{m}}}{(k)^{'}}{t_{\text{s}}} + 0.5\Delta {h_{\text{m}}}{(k)^{''}}t_{\text{s}}^{\text{2}} (15) KF2的状态方程和量测方程为:
\left[ \begin{gathered} \Delta {h_{\text{m}}}(k + 1) \\ \Delta {h_{\text{m}}}{(k + 1)^{'}} \\ \Delta {h_{\text{m}}}{(k + 1)^{''}} \\ \end{gathered} \right] = \left[ \begin{gathered} 1 \;\; {t_{\rm{s}}} \;\; t_{\rm{s}}^2 \hfill \\ 0 \;\;1 \;\;0 \hfill \\ 0\;\; 0 \;\;1 \hfill \end{gathered}\right] \left[ \begin{gathered} \Delta {h_{\text{m}}}(k) \\ \Delta {h_{\text{m}}}{(k)^{'}} \\ \Delta {h_{\text{m}}}{(k)^{''}} \\ \end{gathered} \right] + w(k) (16) \Delta {a_z} = \left[0 \; 0 \; 1\right] \left[ \begin{gathered} \Delta {h_{\text{m}}}(k + 1) \hfill \\ \Delta {h_{\text{m}}}{(k + 1)^{'}} \hfill \\ \Delta {h_{\text{m}}}{(k + 1)^{''}} \hfill \\ \end{gathered} \right] + v(k) (17) 2.3 估计近钻头井眼轨迹参数的无迹卡尔曼滤波算法
如图4所示,在单位采样时间内,井眼轨迹趋于平滑曲线,可以根据前面2个测点的狗腿度和KF2输出测深增量对井眼轨迹进行递归式预测[11]。
{h_{\text{m}}}(k + 1) = {h_{\text{m}}}(k) + \Delta {h_{\text{m}}}(k + 1) (18) \begin{split} & \;\;\;\;\;\;\; \gamma = \arccos \left[ {\cos \alpha (k)\cos \alpha (k - 1) + }\right. \\ & \left.{ \sin \alpha (k)\sin \alpha (k - 1)\cos (\phi (k) - \phi (k - 1))} \right] \end{split} (19) \Delta \gamma (k + 1) = \frac{{\gamma \Delta {h_{\text{m}}}(k + 1)}}{{\Delta {h_{\text{m}}}(k)}} (20) 式中:γ为狗腿角,(°);Δγ为系统经过ts的狗腿角增量,(°);
{h_{\text{m}}}(k) 为k时刻的测深,m。根据
\Delta {h_{\text{m}}}(k) 进行无迹卡尔曼滤波,KF3的状态方程和量测方程为:\begin{array}{l} \quad \alpha (k + 1) = \arccos [\cos (\gamma + \Delta \gamma (k + 1))\cos \alpha (k - 1) +\\ \dfrac{{\sin (\gamma + \Delta \gamma (k + 1))}}{{\sin \gamma }}(\cos \alpha (k - 1)\cos \gamma - \cos \alpha (k))] + {w_{\alpha (k)}} \end{array} (21) \begin{array}{l} \qquad\; \phi (k+1)=\phi (k)+\mathrm{sgn}(\phi (k)-\phi (k-1) \cdot \\ {\rm{arccos}}\dfrac{\mathrm{cos}(\Delta \gamma (k+1)-\mathrm{cos}\alpha (k)\mathrm{cos}\alpha (k{-1})}{\mathrm{sin}\alpha (k)\mathrm{sin}\alpha (k{-1})}+{w}_{\phi (k)} \end{array} (22) 式中:wα和wϕ分别为井斜角和方位角的系统高斯白噪声。
{\alpha _{{\text{KF3}}}} = \alpha {\text{(}}k + 1) + \nu {}_{\alpha (k)} (23) {\phi _{{\text{KF3}}}} = \phi {\text{(}}k + 1) + {\nu _{\phi (k)}} (24) 式中:αKF3和ϕKF3分别为KF3滤波后的井斜角和方位角,(°);vα和vϕ分别为井斜角和方位角的系统观测噪声。
2.4 近钻头重力工具面角的估计
根据旋转测量原理,同一时刻的重力工具面角与磁工具面角的差与测量时刻的井斜角、方位角、地磁倾角呈现一定函数关系[12-13]。根据KF3求出的井眼井斜角和方位角计算磁性工具面角与重力工具面角的差Δω:
\Delta \omega = - 90 + \arctan \frac{{\sin {\phi _{{\text{KF}}3}}}}{{\cos {\alpha _{{\text{KF}}3}}\cos {\phi _{{\text{KF}}3}} - \tan \theta \sin {\alpha _{{\text{KF}}3}}}} (25) 根据Δω,计算旋近钻头动态重力工具面角估计值ωdg,e:
{\omega _{{\text{dg,e}}}} = {\omega _{{\text{m,KF3}}}} + \Delta \omega (26) 式中:ωdg,e为旋近钻头动态重力工具面角估计值,(°);ωm,KF3为KF3滤波后的磁性工具面角,(°)。
2.5 磁干扰情况下的磁性工具面角
近钻头重力工具面角需根据x轴和z轴磁通门传感器的读数求出[14-15],而磁通门测量结果不可避免地会受到周围电磁场的影响,为了降低井下钻具周围电磁场的影响程度,采用径向磁干扰的方法校正x轴和z轴磁通门的测量结果[16]。
磁场的干扰导致磁通门测量的磁场强度发生偏移和变形。磁干扰下的测量结果如图5所示。
在实际钻井过程中,井下仪器旋转一圈时,钻深可以忽略不计,可以看作仪器在原地旋转了一圈。z轴磁通门的测量结果可以认为没有发生变化,而x轴和y轴磁通门的测量值不断发生变化,如图2(a)所示。三轴磁通门传感器的测量数据记为(Bx,By,Bx),地球磁场可以看成一个固定值,即:
B_x^2 + B_y^2 + B_z^2 = {C^2} (27) 式中 :C为常数。
根据椭圆校正原理,对短时间内采集的Bx,By进行磁干扰校正,得出排除磁干扰的Bxm和Bym:
{a_{x{\text{f}}}} = \max \left(1,\frac{{{B_{y\max }} - {B_{y\min }}}}{{{B_{x\max }} - {B_{x\min }}}}\right) (28) b{}_{x{\text{f}}} = \frac{{{B_{x\max }} - {B_{x\min }}}}{2} - {a_{x{\text{f}}}}{B_{x\max }} (29) B{}_{x{\text{m}}} = {B_x}{a_{x{\text{f}}}} + {b_{x{\text{f}}}} (30) {a_{y{\text{f}}}} = \max \left(1,\frac{{{B_{x\max }} - {B_{x\min }}}}{{{B_{y\max }} - {B_{y\min }}}}\right) (31) b{}_{y\text{f}}={a}_{y\text{f}} \left(\frac{{B}_{y\mathrm{max}}-{B}_{y\mathrm{min}}}{2}-{B}_{y\mathrm{max}}\right) (32) B{}_{y{\text{m}}} = {B_y}{a_{y{\text{f}}}} + {b_{y{\text{f}}}} (33) 式中:axf和ayf为x轴磁通门测量磁场强度的校正系数;bxf和byf为 y轴磁通门测量磁场强度的校正值,μT;Bxm和Bym为x轴和y轴排除磁干扰后的磁场强度,μT。
3. 试验与分析
在实验室对NWD施加20~50 r/min转速、 1g~3g振幅的高斯白噪声振动信号,模拟井下钻进过程。采用上述测量方法测量井斜角和方位角,并与实际井斜角和方位角进行对比,结果见图6。由图6可以看出:测量井斜角与实际井斜角的最大误差为1.30°,最小误差为0.02°,平均误差为0.12°,方差为1.26°;测量方位角与实际方位角的最大误差为1.95°,最小误差为0.15°,平均误差为0.57°,方差为2.46°。
图7为采用上文测量方法(以下称为动态测量方法)测量工具面角、NWD探管直接测量工具面角与实际工具面角的差值。由图7可以看出,NWD探管直接测得工具面角与实际工具面角的差最大接近40°,已经不能满足测量近钻头伽马重力工具面角的要求,而采用动态测量方法测得的工具面角与实际工具面角的差小于10°,满足测量近钻头工具面角的要求。
在井斜角为0.5°、方位角度为142.818°,地磁场强度为53.74 μT、磁倾角为55.8°、磁性工具面角30°的测点,对NWD探管x、y方向分别施加0.1和0.2 μT的磁干扰,未进行磁干扰校正前测得磁性工具面角为23.56°,经过磁干扰校正后,磁性工具面角为29.82°,与真实工具面角相差0.18°。
为了验证动态测量方法的可行性和有效性,在某井3 800.00~4 100.00 m井段进行验证,首先在钻进过程利用动态测量方法测量井斜角、方位角和工具面角,然后再停钻测量井斜角、方位角和工具面角(下文称之为静态测量),然后对比静态和动态测量结果。因为钻具停止时没有旋转、振动和磁干扰,因此以静态测量结果为真实值。
图8为动态测得井斜角与静态测得井斜角的对比。由图8可以看出,动态测得井斜角与静态测得井斜角的平均误差为0.19°,方差为0.9342°。图9为动态测得方位角与静态测得方位角的对比。由图9可以看出,动态测得方位角与静态测得方位角的平均误差为1.19°,方差为1.943 642°。
图10为动态测量工具面角与静态测量工具面角的对比。由图10可以看出,动态测得工具面角与静态测得工具面角的误差小于5°。
以上分析可以得出,基于数据融合的井眼轨迹参数测量方法能够有效消除旋转、振动、磁干扰的影响,井斜角、方位角和工具面角的测量精度得到明显提高,满足了随钻地质导向对井眼轨迹参数测量的要求。
4. 结 论
1)针对旋转、振动、磁干扰对近钻头测量仪器的影响,提出了基于数据融合的井眼轨迹参数动态测量方法。该方法采用捷联式卡尔曼滤波器和磁干扰校正系统对测量信号进行滤波、校正,利用四元数法处理测量数据,求出近钻头井眼轨迹参数。
2)实验室模拟试验和现场试验均表明,基于数据融合的井眼轨迹参数动态测量方法可以消除旋转、振动、磁干扰的影响,使测得井眼轨迹参数的精度明显提高,满足了随钻地质导向对井眼轨迹参数测量的要求。
3)建议在现在研究成果基础上,进一步优化数据融合算法,比如基于机器学习的井眼轨迹预测模型,基于遗传算法的卡尔曼滤波器的参数调优。
-
表 1 层段矿物组成与力学参数
Table 1 The mineral composition and mechanical parameters of the stratum
井段 埋深/m 层位 小层 含量,% 弹性
模量/MPa泊松比 水平主应力/MPa 硅质 钙质 泥质 石英 碳酸盐 最小 最大 SY1−1−3 4 314 五峰组—龙马溪组 ③ 55.5 2.0 22.7 35.44 10.74 58.30 0.150 90.19 102.82 SY1−2−7 4 407 五峰组—龙马溪组 ③ 48.1 8.4 32.4 39.36 7.46 54.22 0.158 89.93 102.16 SY1−3−6 4 464 五峰组—龙马溪组 ③ 48.7 14.3 24.8 45.30 6.90 55.06 0.160 91.85 103.45 SY2−1−5 4 392 五峰组—龙马溪组 ③ 44.0 6.5 34.9 50.01 7.83 56.78 0.165 90.52 101.96 SY2−2−4 4 412 五峰组—龙马溪组 ③ 46.8 7.7 30.1 50.41 5.10 50.32 0.165 90.33 102.52 SY2−3−4 4 388 五峰组—龙马溪组 ③ 46.9 11.7 31.0 44.30 16.60 54.36 0.160 89.87 101.19 表 2 微地震监测数据
Table 2 Microseismic monitoring data statistics
井号 压裂段 类型 微地震
事件数量M-SRV E-SRV SY2HF 1~6,8~10,16,18~22 非暂堵 112 297 168 7,11~15,17,23~32 暂堵 107 313 174 SY3HF 1~4 非暂堵 75 300 190 5~27 暂堵 101 422 280 SY4HF 1~3,5,7,11~15 非暂堵 139 377 203 4,6,8~10,16~22 暂堵 154 480 228 SY7HF 1~4,9~14,20,21,24~26 非暂堵 85 261 127 5~8,15~19,22,23 暂堵 94 296 143 表 3 部分应用井的压裂施工参数
Table 3 Parameters of fracturing construction
工艺 井号 井组 储层埋深/
m平均段长/
m射孔类型 暂堵类型 加砂强度/
(m3∙m−1)注液强度/
(m3∙m−1)小粒径
占比,%稳定测试产量/
(104m3∙d−1)常规 SY14−8HF井 加密井 3 352 99 常规射孔 无暂堵 1.31 27.24 38 3.30 投球暂堵 SY14−6HF井 加密井 3 363 105 常规射孔 投球暂堵 1.23 25.91 33 6.23 SY14−7HF井 加密井 3 443 109 常规射孔 投球暂堵 1.17 23.94 33 6.30 深穿透+中等加砂+
小粒径高占比SY35−1HF井 加密井 4 202 84 深穿透 无暂堵 2.05 20.14 76 8.20 SY35−2HF井 加密井 4 071 79 深穿透 无暂堵 2.02 20.42 82 6.71 SY35−3HF井 加密井 3 973 85 深穿透 无暂堵 2.04 20.44 74 8.46 SY35−4HF井 加密井 3 834 87 深穿透 无暂堵 2.08 21.59 79 8.40 超深穿透+中等加砂+
小粒径高占比SY36−1HF井 加密井 4 294 86 超深穿透 无暂堵 2.19 26.04 79 7.80 SY36−2HF井 加密井 4 185 72 超深穿透 无暂堵 2.22 28.40 89 7.88 SY36−4HF井 加密井 4 093 85 超深穿透 无暂堵 2.20 22.31 75 7.64 投球暂堵+高液强砂 SY4−1HF井 扩边井 2 031 92 常规射孔 投球暂堵 4.51 33.12 15 9.76 SY4−3HF井 扩边井 1 914 114 常规射孔 投球暂堵 4.02 35.06 34 9.30 SY4−4HF井 扩边井 1 869 66 常规射孔 投球暂堵 3.93 31.91 35 8.60 -
[1] 聂海宽,党伟,张珂,等. 中国页岩气研究与发展20年:回顾与展望[J]. 天然气工业,2024,44(3):20–52. NIE Haikuan, DANG Wei, ZHANG Ke, et al. Two decades of shale gas research & development in China: Review and prospects[J]. Natural Gas Industry, 2024, 44(3): 20–52.
[2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1–14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1–14.
[3] 王光付,李凤霞,王海波,等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质,2023,44(6):1378–1392. doi: 10.11743/ogg20230604 WANG Guangfu, LI Fengxia, WANG Haibo, et al. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1378–1392. doi: 10.11743/ogg20230604
[4] 易良平,杨长鑫,杨兆中,等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业,2022,42(10):84–97. doi: 10.3787/j.issn.1000-0976.2022.10.008 YI Liangping, YANG Changxin, YANG Zhaozhong, et al. Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84–97. doi: 10.3787/j.issn.1000-0976.2022.10.008
[5] 何希鹏,何贵松,高玉巧,等. 常压页岩气勘探开发关键技术进展及攻关方向[J]. 天然气工业,2023,43(6):1–14. HE Xipeng, HE Guisong, GAO Yuqiao, et al. Progress in and research direction of key technologies for normal-pressure shale gas exploration and development[J]. Natural Gas Industry, 2023, 43(6): 1–14.
[6] 姚红生,王伟,何希鹏,等. 南川复杂构造带常压页岩气地质工程一体化开发实践[J]. 油气藏评价与开发,2023,13(5):537–547. YAO Hongsheng, WANG Wei, HE Xipeng, et al. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537–547.
[7] 姚红生,房启龙,袁明进,等. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向[J]. 石油实验地质,2023,45(6):1132–1142. doi: 10.11781/sysydz2023061132 YAO Hongsheng, FANG Qilong, YUAN Mingjin, et al. Progress of normal-pressure shale gas engineering technology in southeast Chongqing and the research direction of next steps[J]. Petroleum Geology and Experiment, 2023, 45(6): 1132–1142. doi: 10.11781/sysydz2023061132
[8] 倪锋,朱峰,孟庆利. 渝东南地区南川区块膝折构造模式解析[J]. 油气藏评价与开发,2024,14(3):373–381. NI Feng, ZHU Feng, MENG Qingli. Analysis of knee fold structure model in Nanchuan Block of southeastern Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 373–381.
[9] 张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究[J]. 石油钻探技术,2023,51(5):149–155. ZHANG Lina, REN Jianhua, HU Chunfeng. Three-dimensional development characteristics and fracture network interference of atmospheric shale gas reservoir[J]. Petroleum Drilling Techniques, 2023, 51(5): 149–155.
[10] 周博成,熊炜,赖建林,等. 武隆区块常压页岩气藏低成本压裂技术[J]. 石油钻探技术,2022,50(3):80–85. ZHOU Bocheng, XIONG Wei, LAI Jianlin, et al. Low-cost fracturing technology in normal-pressure shale gas reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80–85.
[11] 李龙,陈显举,彭安钰,等. 贵州正安地区常压页岩气压裂关键技术[J]. 钻探工程,2022,49(5):189–193. LI Long, CHEN Xianju, PENG Anyu, et al. Key technologies for hydraulic fracturing of normal pressure shale gas in the Zheng'an area of Guizhou[J]. Drilling Engineering, 2022, 49(5): 189–193.
[12] 刘洪,廖如刚,李小斌,等. 页岩气 “井工厂” 不同压裂模式下裂缝复杂程度研究[J]. 天然气工业,2018,38(12):70–76. LIU Hong, LIAO Rugang, LI Xiaobin, et al. A comparative analysis on the fracture complexity in different fracking patterns of shale gas “well factory”[J]. Natural Gas Industry, 2018, 38(12): 70–76.
[13] 何希鹏,张培先,任建华,等. 渝东南南川地区东胜构造带常压页岩气勘探开发实践[J]. 石油实验地质,2023,45(6):1057–1066. HE Xipeng, ZHANG Peixian, REN Jianhua, et al. Exploration and development practice of normal pressure shale gas in Dongsheng structural belt, Nanchuan area, southeast Chongqing[J]. Petroleum Geology and Experiment, 2023, 45(6): 1057–1066.
[14] 蒋恕,李园平,杜凤双,等. 提高页岩气藏压裂井射孔簇产气率的技术进展[J]. 油气藏评价与开发,2023,13(1):9–22. JIANG Shu, LI Yuanping, DU Fengshuang, et al. Recent advancement for improving gas production rate from perforated clusters in fractured shale gas reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 9–22.
[15] 郭建春,路千里,刘壮,等. “多尺度高密度”压裂技术理念与关键技术:以川西地区致密砂岩气为例[J]. 天然气工业,2023,43(2):67–76. GUO Jianchun, LU Qianli, LIU Zhuang, et al. Concept and key technology of “multi-scale high-density” fracturing technology: a case study of tight sandstone gas reservoirs in the western Sichuan Basin[J]. Natural Gas Industry, 2023, 43(2): 67–76.
[16] 刘善勇,尹彪,楼一珊,等. 粗糙裂缝内支撑剂运移与展布规律数值模拟[J]. 石油钻探技术,2024,52(4):104–109. LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures[J]. Petroleum Drilling Techniques, 2024, 52(4): 104–109.
[17] 唐堂,郭建春,翁定为,等. 基于PIV/PTV的平板裂缝支撑剂输送试验研究[J]. 石油钻探技术,2023,51(5):121–129. TANG Tang, GUO Jianchun, WENG Dingwei, et al. Experimental study of proppant transport in flat fracture based on PIV/PTV[J]. Petroleum Drilling Techniques, 2023, 51(5): 121–129.
[18] 刘建坤,蒋廷学,卞晓冰,等. 常压页岩气低成本高效压裂技术对策[J]. 钻井液与完井液,2020,37(3):377–383. LIU Jiankun, JIANG Tingxue, BIAN Xiaobing, et al. The countermeasure of low cost and high efficiency fracturing technology of normal pressure shale gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 377–383.
[19] TADA H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook[M]. 3rd ed. New York: ASME Press, 2000.
[20] HSU Y C. The infinite sheet with two radial cracks from cylindrical hole under inclined tension or in-plane shear[J]. International Journal of Fracture, 1977, 13(6): 839–845. doi: 10.1007/BF00034326
[21] 唐世斌,刘向君,罗江,等. 水压诱发裂缝拉伸与剪切破裂的理论模型研究[J]. 岩石力学与工程学报,2017,36(9):2124–2135. TANG Shibin, LIU Xiangjun, LUO Jiang, et al. Theoretical model for tensile and shear crack initiation at the crack tip in rock subjected to hydraulic pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2124–2135.
[22] 唐世斌,张恒. 基于最大周向拉应变断裂准则的岩石裂纹水力压裂研究[J]. 岩石力学与工程学报,2016,35(增刊1):2710–2719. TANG Shibin, ZHANG Heng. Hydraulic fracture prediction theory based on the maximum tangential strain criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(supplement 1): 2710–2719.
[23] 刘明明,马收,刘立之,等. 页岩气水平井压裂施工中暂堵球封堵效果研究[J]. 钻采工艺,2020,43(6):44–48. LIU Mingming, MA Shou, LIU Lizhi, et al. Study on the effect of temporary plugging ball in fracturing of horizontal shale gas well[J]. Drilling & Production Technology, 2020, 43(6): 44–48.
[24] 郭建春,赵峰,詹立,等. 四川盆地页岩气储层暂堵转向压裂技术进展及发展建议[J]. 石油钻探技术,2023,51(4):170–183. doi: 10.11911/syztjs.2023039 GUO Jianchun, ZHAO Feng, ZHAN Li, et al. Recent advances and development suggestions of temporary plugging and diverting fracturing technology for shale gas reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170–183. doi: 10.11911/syztjs.2023039
[25] 吕振虎,吕蓓,罗垚,等. 基于光纤监测的段内多簇暂堵方案优化[J]. 石油钻探技术,2024,52(1):114–121. LYU Zhenhu, LYU Bei, LUO Yao, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring[J]. Petroleum Drilling Techniques, 2024, 52(1): 114–121.
[26] 蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191. doi: 10.11911/syztjs.2023023 JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reser-voirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191. doi: 10.11911/syztjs.2023023
[27] 吴峙颖,路保平,胡亚斐,等. 压裂多级裂缝内动态输砂物理模拟实验研究[J]. 石油钻探技术,2020,48(4):106–110. WU Shiying, LU Baoping, HU Yafei, et al. Experimental study on the physical simulation of dynamic sand transport in multi-stage fractures[J]. Petroleum Drilling Techniques, 2020, 48(4): 106–110.
[28] 任洪达,董景锋,高靓,等. 新疆油田玛湖砂岩储层自悬浮支撑剂现场试验[J]. 油气藏评价与开发,2023,13(4):513–518. REN Hongda, DONG Jingfeng, GAO Jing, et al. Field test of self-suspending proppant at Mahu sandstone reservoir in Xinjiang Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 513–518.
[29] 郭建春,路千里,何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业,2022,42(8):148–161. GUO Jianchun, LU Qianli, HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry, 2022, 42(8): 148–161.
[30] 杨兆中,袁健峰,张景强,等. 四川盆地海相页岩水平井压裂裂缝研究进展及认识[J]. 油气藏评价与开发,2024,14(4):600–609. YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, et al. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600–609.
-
期刊类型引用(3)
1. 刘锴沅. 连续管套管除垢空化射流喷头优化设计与应用. 石油机械. 2024(02): 44-49 . 百度学术
2. 周照恒,李玉星,林敏,郭宏帅,王建夫. 盐穴储气库注采气井脖颈收缩原因及预防治理措施. 油气储运. 2024(11): 1313-1319 . 百度学术
3. 李朝阳,陶立波,张跃,刘威,汲广麟,王俊博. 装有延长抗磨损时间和减缓压力衰减的硬质合金喷嘴清洗管井工具. 石油钻采工艺. 2024(03): 386-394 . 百度学术
其他类型引用(2)