Abstract:
The geological and engineering conditions of Niuye Block I in the Shengli Shale Oil Field are complex. To enhance the quality of directional drilling in test wells within this block, a study on rotary steerable drilling technology was conducted. Through research and practical exploration of technologies such as rotary steerable systems, tool optimization, 3D trajectory optimization, trajectory control, built-up rate prediction and correction, and well temperature risk prediction models, several methods were developed. These included an optimization template for bottom hole assembly, trajectory control strategies, standard instruction sets for steering forces, and procedures for high-temperature operations. As a result, a standard operational mode for rotary steerable drilling in shale oil was established and applied in 20 wells in Niuye Block I. The application results demonstrate that this operational mode effectively improves the rate of penetration (ROP), increases the footage per single run and well using the rotary steerable system, and enables the construction of a 2,000-meter-long horizontal section in a single run. These findings provide a new technical approach for the efficient development of shale oil in Jiyang Depression of Shengli Shale Oil Field.