气体钻井近钻头超前探测声源评价与优选

简旭, 李皋, 王军, 王浩, 王松涛, 王华平

简旭,李皋,王军,等. 气体钻井近钻头超前探测声源评价与优选[J]. 石油钻探技术,2025,53(1):41−48. DOI: 10.11911/syztjs.2025006
引用本文: 简旭,李皋,王军,等. 气体钻井近钻头超前探测声源评价与优选[J]. 石油钻探技术,2025,53(1):41−48. DOI: 10.11911/syztjs.2025006
JIAN Xu, LI Gao, WANG Jun, et al. Evaluation and optimization of acoustic sources for advanced detection near drill bits in gas drilling [J]. Petroleum Drilling Techniques, 2025, 53(1):41−48. DOI: 10.11911/syztjs.2025006
Citation: JIAN Xu, LI Gao, WANG Jun, et al. Evaluation and optimization of acoustic sources for advanced detection near drill bits in gas drilling [J]. Petroleum Drilling Techniques, 2025, 53(1):41−48. DOI: 10.11911/syztjs.2025006

气体钻井近钻头超前探测声源评价与优选

详细信息
    作者简介:

    简旭(1991—),男,河南新野人,2014年毕业于长江大学勘查技术与工程专业,2017年获西南石油大学油气井工程专业硕士学位,2020年获西南石油大学油气井工程专业博士学位,高级工程师,主要从事气体钻井、随钻声波超前探测、钻井工艺方面的研究。E-mail:jxsky-blue@foxmail.com

  • 中图分类号: P631.4

Evaluation and Optimization of Acoustic Sources for Advanced Detection nearDrill Bits in Gas Drilling

  • 摘要:

    为了优选适用于气体钻井条件下的近钻头超前探测声源,提出了气体钻井条件下近钻头声波超前测距方法,进行了不同探测距离下的超声波测距、冲击回波共振测距、扫频声波共振测距和冲击震源测距试验,分析了4类声波测距声源的可行性,并从声源特征、探测距离和分辨率3个方面优选了适用于气体钻井的近钻头超前探测声源。试验结果表明:当超声波的频率较低且尾波较短时,可从靠近声波发射源接收到的波形中识别出反射波信号,但探测距离近;冲击回波共振频率受岩性影响较大,导致入射波与反射波之间未形成理想的驻波,其共振测距的误差较大;扫频声波产生的入射波和反射波可形成较为理想的驻波,测距误差较小,但对扫频发生器的低频性能要求高;根据试验结果优选出的冲击震源可用于探测岩性界面,该冲击震源的尾波被显著衰减,有利于识别时域内的地层反射波信号。研究表明,优选出的冲击震源具有冲击能量强、频率低和尾波短的优势,可满足气体钻井条件下超前探测对声源的要求。

    Abstract:

    To optimize the acoustic sources for advanced detection near drill bits in gas drilling environments, a near-bit acoustic ranging method was proposed. This method is specifically tailored for gas drilling conditions. Experiments were conducted on ultrasonic ranging, impact echo resonance ranging, sweep-frequency acoustic resonance ranging, and impact reflection wave ranging at various detection distances. The feasibility of these four types of acoustic sources for ranging was evaluated. The near-bit acoustic source suitable for gas drilling was optimized based on three factors: acoustic source characteristics, detection distance, and resolution. Experimental results indicate that when the ultrasound frequency is low and the tail wave is short, the reflected wave signal can be identified in the waveform received close to the acoustic wave emission source, but the detection range is limited. The frequency of the impact echo is highly influenced by lithology, which prevents the formation of an ideal standing wave between the incident and reflected waves, leading to significant errors in resonance ranging. The incident and reflected waves generated by sweep-frequency acoustic sources form relatively ideal standing waves, resulting in smaller ranging errors. However, this requires high low-frequency performance of the sweep-frequency generator. The preferred impact source can effectively detect lithological interfaces, and its tail wave experiences significant attenuation, which is beneficial for identifying reflected wave signals from the formation in the time domain. The results show that the preferred impact source offers advantages such as strong impact energy, low frequency, and short tail wave, which meet the acoustic source requirements for advanced detection under gas drilling conditions.

  • 图  1   近钻头声波超前探测示意

    Figure  1.   Near-bit acoustic advanced detection

    图  2   超声波测距试验示意

    Figure  2.   Ultrasonic ranging experiment

    图  3   0.5 MHz激发频率下不同厚度页岩的波形

    Figure  3.   Waveforms of shale with different thicknesses at excitation frequency of 0.5 MHz

    图  4   1.0 MHz激发频率下不同厚度页岩的波形

    Figure  4.   Waveforms of shale with different thicknesses at excitation frequency of 1 MHz

    图  5   2.5 MHz激发频率下不同厚度页岩的波形

    Figure  5.   Waveforms of shale with different thicknesses at excitation frequency of 2.5 MHz

    图  6   钢球冲击共振测距试验示意

    Figure  6.   Steel ball impact resonance ranging experiment

    图  7   钢球冲击不同厚度岩石时接收信号的时域和频域

    Figure  7.   Time domain and spectrum of steel ball impact on rocks with different thicknesses

    图  8   扫频声波共振测距试验示意

    Figure  8.   Sweep-frequency acoustic wave ranging experiment

    图  9   不同长度PVC管扫频声波共振测距试验结果

    Figure  9.   Experimental results of sweep-frequency resonance ranging of PVC pipes with different lengths

    图  10   冲击震源装置

    Figure  10.   Impact source device

    图  11   不同高度聚四氟乙烯下首波振幅、频率与冲击高度的关系

    Figure  11.   Relationship between amplitude and frequency of first wave and impact height of PTEF with different heights

    图  12   砂岩上加速度传感器接收到的时域波形

    Figure  12.   Time domain waveform received by acceleration sensor on sandstone

    表  1   冲击回波共振测距结果

    Table  1   Impact echo resonance ranging results

    岩性岩石波速/
    (m·s−1
    岩石厚度/
    m
    共振频率/
    Hz
    测量厚度/
    m
    相对误差,
    %
    砂岩3 5631.211901.43719.75
    砂岩2 5970.431430.3961.00
    砂岩2 4130.340340.2874.30
    花岗岩5 0000.370500.33913.00
    下载: 导出CSV

    表  2   扫频共振测距试验结果

    Table  2   Experimental results of sweep-frequency resonance ranging

    空气波速/
    (m·s−1
    PVC管长度/
    m
    第1共振点频率/
    Hz
    探测距离/
    m
    相对误差,
    %
    340 0.50 300.0 0.566 13.2
    0.82 193.3 0.879 7.2
    0.98 164.1 1.040 6.1
    下载: 导出CSV
  • [1] 胡万俊,夏文鹤,李永杰,等. 气体钻井随钻安全风险智能识别方法[J]. 石油勘探与开发,2022,49(2):377–384. doi: 10.11698/PED.2022.02.16

    HU Wanjun, XIA Wenhe, LI Yongjie, et al. An intelligent identification method of safety risk while drilling in gas drilling[J]. Petroleum Exploration and Development, 2022, 49(2): 377–384. doi: 10.11698/PED.2022.02.16

    [2] 孟英峰,吴苏江,陈星元,等. 邛崃1井氮气钻井事故分析(Ⅰ):构成事故的重要事件[J]. 天然气工业,2015,35(10):125–134. doi: 10.3787/j.issn.1000-0976.2015.10.017

    MENG Yingfeng, WU Sujiang, CHEN Xingyuan, et al. Analysis on the nitrogen drilling accident of Well Qionglai 1, western Sichuan Basin (Ⅰ): major inducement events[J]. Natural Gas Industry, 2015, 35(10): 125–134. doi: 10.3787/j.issn.1000-0976.2015.10.017

    [3] 孟英峰,吴苏江,陈星元,等. 邛崃1井氮气钻井事故分析(Ⅱ):事故过程的还原及教训[J]. 天然气工业,2015,35(10):135–144. doi: 10.3787/j.issn.1000-0976.2015.10.018

    MENG Yingfeng, WU Sujiang, CHEN Xingyuan, et al. Analysis on the nitrogen drilling accident of Well Qionglai 1, western Sichuan Basin (Ⅱ): restore of accident process and lessons to learn[J]. Natural Gas Industry, 2015, 35(10): 135–144. doi: 10.3787/j.issn.1000-0976.2015.10.018

    [4] 张文,刘向君,梁利喜,等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术,2023,51(2):37–45. doi: 10.11911/syztjs.2022094

    ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling[J]. Petroleum Drilling Techniques, 2023, 51(2): 37–45. doi: 10.11911/syztjs.2022094

    [5] 叶金龙,沈建文,吴玉君,等. 川深1井超深井钻井提速关键技术[J]. 石油钻探技术,2019,47(3):121–126. doi: 10.11911/syztjs.2019056

    YE Jinlong, SHEN Jianwen, WU Yujun, et al. Key techniques of drilling penetration rate improvement in ultra-deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121–126. doi: 10.11911/syztjs.2019056

    [6] 陈烨,闫铁,孙晓峰,等. 气体钻井地层出水量与钻具黏卡风险预测模型[J]. 断块油气田,2015,22(6):807–811.

    CHEN Ye, YAN Tie, SUN Xiaofeng, et al. Formation water production and risk prediction model of stuck pipe during gas drilling[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 807–811.

    [7] 侯杰,刘永贵,李海. 气体钻井井眼干燥技术及携水模拟装置的研制[J]. 钻井液与完井液,2015,32(4):32–36.

    HOU Jie, LIU Yonggui, LI Hai. Development of Testing device simulating drying of hole and water carrying in air drilling[J]. Drilling Fluid & Completion Fluid, 2015, 32(4): 32–36.

    [8] 祝效华, 刘骉, 门宏建,等. 气体钻井岩屑遇水黏附现象与对策研究[J]. 特种油气藏,2018,25(4):143–148.

    ZHU Xiaohua ,LIU Biao ,MEN Hongjian, et al. Adhesion of cuttings during gas drilling and counter-measures[J]. Special Oil & Gas Reservoir, 2018, 25(4): 143–148.

    [9] 李露春,练章华,蒲克勇,等. 气体连续循环钻井技术在博孜区块砾石层的应用[J]. 西南石油大学学报(自然科学报),2021,43(4):44–50.

    LI Luchun, LIAN Zhanghua, PU Keyong, et al. Application of gas continuous circulation drilling technolgy ingravel layer in Bozi Block[J]. Journal of Soutjwest Petroleum University(Science & Techonlogy), 2021, 43(4): 44–50.

    [10] 汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11. doi: 10.3969/j.issn.1672-7703.2023.03.001

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11. doi: 10.3969/j.issn.1672-7703.2023.03.001

    [11] 熊战,何悦峰,张闯,等. 青海油田深探井优快钻井关键技术[J]. 石油钻采工艺,2021,43(6):698–704.

    XIONG Zhan, HE Yuefeng, ZHANG Chuang, et al. Key technologies for optimized fast drilling of deep exploration wells in Qinghai Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(6): 698–704.

    [12] 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94. doi: 10.3787/j.issn.1000-0976.2022.12.009

    DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: Current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94. doi: 10.3787/j.issn.1000-0976.2022.12.009

    [13] 陈超峰,刘新宇,李雪彬,等. 准噶尔盆地呼探1井高温高压超深井试油测试技术[J]. 石油钻采工艺,2023,45(4):447–454.

    CHEN Chaofeng, LIU Xinyu, et al. High-temperature, high-pressure & ultra-deep well testing technology used in Well Hutan 1 in tha Junggar Basin[J]. Oil Drilling & Production Technology, 2023, 45(4): 447–454.

    [14] 杨书博,乔文孝,赵琪琪,等. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术,2021,49(2):113–120. doi: 10.11911/syztjs.2021020

    YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, et al. The characteristics of the acoustic field ahead of the bit in “look-ahead” acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113–120. doi: 10.11911/syztjs.2021020

    [15] 喻著成,许期聪,邱儒义,等. 随钻声波井下全景成像技术现状及展望[J]. 钻采工艺,2023,46(3):171–175. doi: 10.3969/J.ISSN.1006-768X.2023.03.29

    YU Zhucheng, XU Qicong, QIU Ruyi, et al. Status and prospect of borehole panoramic imaging while drilling based on acoustic wave[J]. Drilling & Production Technology, 2023, 46(3): 171–175. doi: 10.3969/J.ISSN.1006-768X.2023.03.29

    [16]

    CONSTABLE M V, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: From vision to reality[J]. Petrophysics, 2016, 57(5): 426–446.

    [17]

    ARATA F, MELE M, TARCHIANI C, et al. Look ahead geosteering via real time integration of logging while drilling measurements with surface seismic[R]. SPE 187203, 2017.

    [18]

    MAACK S, KÜTTENBAUM S, BÜHLING B, et al. Low frequency ultrasonic pulse-echo datasets for object detection and thickness measurement in concrete specimens as testing tasks in civil engineering[J]. Data in Brief, 2023, 48: 109233.

    [19] 霍超. 超声波探伤技术在钻具失效分析中的应用研究[D]. 大庆:东北石油大学,2017.

    HUO Chao. Application of ultrasonic flaw detection technology in failure analysis of drilling tools[D]. Daqing: Northeast Petroleum University, 2017.

    [20] 李戈,孟祥杰,王晓华,等. 国内超声波测距研究应用现状[J]. 测绘科学,2011,36(4):60–62.

    LI Ge, MENG Xiangjie, WANG Xiaohua, et al. Research and application status on domestic ultrasonic ranging[J]. Science of Surveying and Mapping, 2011, 36(4): 60–62.

    [21]

    SADRI A. Application of impact-echo technique in diagnoses and repair of stone Masonry structures[J]. NDT & E International, 2003, 36(4): 195–202.

    [22]

    HELLWIG O, BOHLEN T. Prediction ahead of the bit using borehole guided waves[R]. SEG 2008-0353, 2008.

    [23] 朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40. doi: 10.11911/syztjs.2022113

    ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40. doi: 10.11911/syztjs.2022113

    [24] 简旭,李皋,王军,等. 气体钻井声波超前测距方法与数值模拟[J]. 石油钻探技术,2022,50(3):132–138. doi: 10.11911/syztjs.2022016

    JIAN Xu, LI Gao, WANG Jun, et al. Acoustic advance ranging method in gas drilling and its numerical simulation[J]. Petroleum Drilling Techniques, 2022, 50(3): 132–138. doi: 10.11911/syztjs.2022016

    [25] 李皋,黎洪志,简旭,等. 气体钻井超前探测震源工具设计及力学性能模拟研究[J]. 石油钻探技术,2022,50(6):14–20. doi: 10.11911/syztjs.2022112

    LI Gao, LI Hongzhi, JIAN Xu, et al. Design and mechanical property simulation of a impact source tool for the advanced detection of gas drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 14–20. doi: 10.11911/syztjs.2022112

    [26]

    SUGIMURA Y, MASUKAWA T, YONEZAWA T, et al. Development for acoustic sensing system ahead of the bit for detection of abnormally high-pressured formation[R]. SPE 56700, 1999.

  • 期刊类型引用(11)

    1. 田雨,张昕,张鹏翔,孙耀宁,许晨星,宋西岩. 冲击频率可调的钻井提速工具结构设计与试验. 石油机械. 2024(02): 36-43 . 百度学术
    2. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 . 百度学术
    3. 孙养清,易先中,万继方,易军,吴霁薇,刁斌斌,陈志湘. 机械式复合冲击器的工作特性分析. 石油机械. 2024(06): 29-37+108 . 百度学术
    4. 陈炼,宋朝晖,王新东,张武涛,谢正森,粟籽华. 单牙轮钻头楔形牙齿偏转角优化方法. 石油钻探技术. 2023(01): 57-61 . 本站查看
    5. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 . 百度学术
    6. 闫炎,韩礼红,刘永红,杨尚谕,曹婧,牟易升. 全尺寸PDC钻头旋转冲击破岩过程数值模拟. 石油机械. 2023(06): 36-42 . 百度学术
    7. 何超,邓虎,罗祝涛,李枝林,徐建超. 扭力冲击器流体仿真优化与试验. 钻采工艺. 2023(04): 26-32 . 百度学术
    8. 王勇军,刘刚,佟铮,赵长亮,郑宇轩,冯守涛. 旋冲螺杆钻具在硬岩地热钻探中的应用研究. 钻探工程. 2023(05): 146-152 . 百度学术
    9. 毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 . 百度学术
    10. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
    11. 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验. 石油钻探技术. 2021(05): 46-50 . 本站查看

    其他类型引用(6)

图(12)  /  表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  13
  • PDF下载量:  22
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2025-01-05
  • 网络出版日期:  2025-01-16
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回