Design and Performance Simulation of Acoustic Metamaterial Particle for Downhole Imaging
-
摘要:
由于传统声波探测技术依赖地层物性差异,因此识别范围和精度受限。为解决该问题,基于质量弹簧结构模型,利用声学超材料独特微观结构的声学原理,设计了3层结构的声学超材料颗粒,优化了材料的结构尺寸,优选了材料的组成,建立了超材料颗粒的声学特征模型,以表征被动发声超材料颗粒特殊的声频和声强特性。采用有限元数值模拟软件模拟了声学超材料颗粒的性能, 结果表明,声学超材料颗粒具备特殊声学频带,且特征频率随着粒径减小逐渐升高。在声学禁带频率范围内,声波无法穿透超材料颗粒群,大部分被反射;在声学禁带频率范围外,声波可以穿透超材料颗粒群。声学超材料颗粒具备井下声学强化造影能力,具有评价井筒完整性和监测压裂裂缝的潜力。
Abstract:The traditional acoustic detection technology depends on the difference in physical properties of formation, and the range and accuracy of information identification are limited. Therefore, acoustic metamaterial particles with a three-layer structure were designed by using the unique microstructure principle of acoustic metamaterials based on the mass-spring structure model. The material structure size was optimized, and the optimal material composition was selected. As a result, the acoustic characteristic model of metamaterial particles was established to characterize the special acoustic frequency and acoustic strength characteristics of passive acoustic metamaterial particles. The particle properties of acoustic metamaterials were simulated by finite element numerical simulation software. The results show that the acoustic metamaterial particles have special acoustic frequency bands, and the characteristic frequency gradually increases as the particle size decreases. Within the frequency range of the acoustic band gap, the acoustic wave cannot penetrate the metamaterial particle cluster, and most of them are reflected. Outside the acoustic band gap, the acoustic wave can penetrate the metamaterial particle cluster. The acoustic metamaterial particles can strengthen the downhole imaging and show potential for evaluating wellbore integrity and monitoring fractures.
-
大庆油田古龙凹陷页岩油资源量巨大,勘探开发前景广阔,是大庆油田重要的接替领域[1-2]。目前,大庆油田古龙页岩油开发大多采用长水平段水平井,但由于降本增效的要求,钻进提速需求十分紧迫。较高的机械钻速意味着产生大量的岩屑,而岩屑运移不充分造成的井眼清洁问题已逐渐成为古龙页岩油区块水平井钻井的主要问题之一。当更换钻头、接单根等作业需要停止钻井液循环时,钻井液中的岩屑会发生沉降,并在大斜度井段和水平井段沉积形成岩屑床[3-4]。岩屑沉降末速度、成床厚度、岩屑床表面颗粒再启动速度等关键参数的计算,均与岩屑的沉降阻力系数有关[5-7]。因此,研究古龙页岩岩屑在钻井液中的沉降规律,可为优化钻井液流变性和循环排量提供依据。
国内外学者对球形颗粒在牛顿流体中的沉降规律开展了大量的试验研究[8-9],得到了较高精度的预测模型。但是,页岩岩屑的形状不规则,且大多数钻井液为具有一定剪切稀释性的非牛顿流体[10-11],以往提出的预测球形颗粒在牛顿流体中的沉降阻力系数模型,是否适用于预测不规则形状页岩岩屑在非牛顿流体中的沉降阻力系数值得商榷[12-13]。为了解决上述问题,笔者对沉降试验数据回归分析,建立了球形颗粒在幂律流体中的沉降阻力系数预测模型;在此基础上,引入形状因子来描述颗粒的二维几何特征,建立了用于预测页岩岩屑在幂律流体中的阻力系数模型;根据得到的岩屑阻力系数预测模型使用迭代法计算岩屑沉降速度,分析了通过模型计算所得的沉降速度与实测沉降速度的平均相对误差,验证了该模型预测结果的准确性。
1. 沉降试验
1.1 试验装置和试验步骤
沉降试验装置如图1所示。该装置为有机玻璃管,内径100 mm,高度1 500 mm。该装置使用千眼狼高速摄像机(2F04C型)捕捉岩屑的沉降轨迹。图像采集区域设置为玻璃管底部300 mm范围内,既保证岩屑已达到沉降末速度,又避免端部效应对沉降速度产生影响。同时,为了减少不确定性因素的干扰,每组试验至少重复进行3次,且数据处理时只保留最大相对误差小于5%的试验数据,用于拟合阻力系数的关系式。
1.2 试验材料和流体流变参数
为了使沉降阻力系数预测模型具有较大的颗粒雷诺数适用范围,选取不锈钢、氧化锆和玻璃3种材质的球形颗粒进行沉降试验,同时选取大庆油田古龙页岩岩屑进行不规则形状颗粒沉降试验。为了降低壁面效应对试验的影响,颗粒直径相比有机玻璃管直径尽量小。试验用颗粒的物性参数见表1。
表 1 试验用颗粒的物性参数Table 1. Physical property parameters of particles for experiments颗粒材质 颗粒等效直径/mm 密度/(kg·m−3) 不锈钢 1,2,3,4,5 7 930 氧化锆 1,2,3,4,5 6 080 玻璃 1,2,3,4,5 2 500 页岩颗粒 2.1~5.7 2 073 试验用羧甲基纤维素钠(CMC)水溶液作为幂律流体基液,质量分数0.25%~2.00%。使用Anto paar MCR 92型流变仪测试其在试验温度下的流变性,并根据幂律流体的流变模型
τ=K˙γn (τ为剪切应力,Pa;˙γ 为剪切速率,s−1;K为幂律流体的稠度指数,Pa·sn;n为流体的流性指数),对测试流体的流变参数进行拟合。通过流变仪的温度控制系统来控制试验液体温度,使其与试验时的温度保持一致。试验所用溶液的物性参数及流变参数见表2。表 2 不同质量分数CMC水溶液的物性参数及流变参数Table 2. Physical property and rheological parameters of CMC aqueous solution with different mass fractionsCMC质量分数,% 温度/℃ 密度/(kg·m−3) 流变参数 K/(Pa·sn) n 2.00 17.3 1 008.0 8.161 9 0.418 2 1.75 18.6 1 006.0 5.340 5 0.443 7 1.50 18.0 1 005.0 3.320 4 0.471 0 1.25 17.6 1 004.5 1.532 2 0.522 4 1.00 17.2 1 003.0 0.697 7 0.578 6 0.50 16.6 1 002.0 0.045 0 0.819 4 0.25 16.9 1 001.0 0.008 0 0.953 0 1.3 古龙页岩岩屑形状表征
颗粒形状是影响物体沉降速度和沉降状态的重要因素。有学者研究指出[14],当颗粒雷诺数
Res⩾ 时岩屑沉降轨迹是摆动的,而当R{e_{\rm{s}}} < 100 时沉降轨迹是稳定的。在不考虑颗粒沉降过程中出现的二次运动,圆形度c更适合用于建立预测模型[15]。所以,在R{e_{\rm{s}}} < 100 的低颗粒雷诺数情况下,通过引入c来建立岩屑在幂律流体中的沉降阻力系数预测模型是可行的。c指颗粒最大投影面周长与其等效圆的周长之比,因其为对颗粒轮廓不规则性敏感的二维形状参数,所以测量相对容易,其定义为:c = \frac{{{\text{π}} {d_A}}}{L} (1) 式中:dA为颗粒最大投影面等效圆的直径,m;L为颗粒最大投影面周长,m。
试验用大庆古龙页岩岩屑形态如图2所示。
利用图像粒子分析软件ImageJ的“分析颗粒”功能,对目标颗粒进行了圆形度测定。ImageJ用户指南中圆形度c的定义为[16]:
{\text{ }}c = 4{\text{π}} \frac{{{A_{\text{p}}}}}{{{L^2}}} (2) 式中:AP为颗粒最大投影面的表面积,m2。
球形颗粒c = 1,其他任何形状颗粒c < 1。选取的部分页岩岩屑图像转换实例,如图3所示。
试验得到了224组页岩岩屑圆形度和等效直径的分布情况(见图4)。页岩岩屑等效直径为3.2~4.2 mm,中值为3.7 mm;圆形度为0.65~0.87,中值为0.76,圆形度集中在0.70~0.85。
2. 球形颗粒沉降阻力系数模型
颗粒沉降过程中受到的流体黏滞力与颗粒动能的比值称为阻力系数,是描述颗粒沉降行为的主要参数。阻力系数可根据流体和颗粒的性质以及沉降速度来计算:
{C_{\text{D}}} = \frac{{4\left( {{\rho _{\rm{p}}} - {\rho _{\rm{l}}}} \right){d_{\rm{e}}}g}}{{3{\rho _{\rm{l}}}{v_{\rm{t}}}^2}} (3) \; 其中\qquad \qquad\qquad\; {d_{\rm{e}}} = \sqrt[3]{\dfrac{6{m_{\rm{p}}}}{{\text{π}} {\rho _{\rm{p}}}}} \qquad\qquad \qquad\quad\; (4) 式中:CD为阻力系数;ρl 为流体密度,kg/m3;g为重力加速度,m/s2;vt 为沉降速度,m/s;de为颗粒的等效直径(当颗粒为球体时,de等于直径),m;mp为颗粒的质量,kg;ρp为颗粒的密度,kg/m3。
对于光滑圆球,阻力系数仅为颗粒雷诺数的函数,即:
{C_{\text{D}}} = f\left( {R{e_{\rm{s}}}} \right) (5) 颗粒所受的惯性力与黏滞力之比为颗粒雷诺数,是描述颗粒沉降行为的另一个主要参数。对于幂律流体,颗粒雷诺数的表达式为:
{Re_{\rm{s}}} = \frac{{{\rho _l}{v_{\text{t}}}^{2 - n}d_{\rm{e}}^n}}{K} (6) 首先对球形颗粒进行沉降试验,并建立阻力系数CD(式(3))和颗粒雷诺数Res(式(6))的关系式。对196组球形颗粒的沉降试验数据进行分析,并以对数坐标绘制CD与Res的关系式,见图5。图5中,三角形(幂律流体中沉降试验结果)所表示的数据点,由式(6)计算所得的颗粒雷诺数Res与式(3)计算所得的阻力系数CD组成;斜线(斯托克斯公式计算结果)所表示的数据点,由式(6)计算所得的颗粒雷诺数Res与斯托克斯公式(CD=24/Res)计算所得的阻力系数CD组成。
从图5可以看出,使用斯托克斯公式预测球形颗粒在幂律流体中的沉降阻力系数时存在较大的误差。例如,在Res< 0.1条件下,幂律流体中的沉降试验结果与斯托克斯公式预测结果之间的平均相对误差高达30.16%,说明非牛顿流体的流变特性对流体–的颗粒相互作用有重要影响。在这种情况下,用牛顿关联式计算圆球在非牛顿流体中的沉降阻力系数将会产生较大的误差。
截至目前,多位学者提出了关于球形颗粒在非牛顿流体中的沉降阻力系数预测关系式,如S. N.Shah等人[17]提出的沉降阻力系数模型为:
\sqrt {C_{\text{D}}^{2 - n}R{e^2}} = A{\left( {Re} \right)^B} \;\; \left( {{\text{0}}{\text{.281 < }}R{e_{\rm{s}}}{\text{ < }}1.000} \right) (7) 式中:
A = 6.914\;8{n^2} - 24.838n + 22.642 ;B = - 0.506\;7{n^2} + 1.323\;4n - 0.174\;4 。A. R. Khan等人[18]提出的阻力系数模型为:
\begin{split} {C_{\text{D}}} = & {(2.25R{e_{\rm{s}}}^{ - 0.31} + 0.36R{e_{\rm{s}}}^{0.06})^{3.45}}\\ &{\text{ (0}}{\text{.01 < }}R{e_{\rm{s}}}{\text{ < 3.00}} \times {\text{1}}{{\text{0}}^{\text{5}}}) \end{split} (8) I. Machač等人[19]提出的阻力系数模型为:
\left\{ {\begin{array}{*{20}{ll}} {C_{\text{D}}} = \dfrac{{24}}{{R{e_{\rm{s}}}}}X\left( n \right)&(R{e_{\rm{s}}} < 1) \\ {C_{\text{D}}} = \dfrac{{24}}{{R{e_{\rm{s}}}}}X\left( n \right) + \dfrac{{10.5n - 3.5}}{{R{e_{\rm{s}}}^{0.32n + 0.13}}} &(1 \leqslant R{e_{\rm{s}}} < 1\;000){\text{ }} \end{array}} \right. (9) \begin{split} \,其中 \; \qquad X\left( n \right) = &{3^{\tfrac{3n - 3}{2}}}\frac{{33{n^5} - 64{n^4} - 11{n^3} + 97{n^2} + 16n}}{{4{n^2}(n + 1)(n + 2)(2n + 1)}}\;\\ &(n > 0.5 )\;\;\;\;\\[-10pt] \end{split}\;\;\;\; (10) V. C. Kelessidis等人[20]提出的阻力系数模型为:
\begin{split} {C_{\text{D}}} = &\frac{{24}}{{R{e_{\rm{s}}}}}(1 + 0.140\;7R{e_{\rm{s}}}^{0.601\;8}) + \frac{{0.211\;8}}{{1 + \dfrac{0.421\;5}{R{e_{\rm{s}}}}}}\\ &{\text{ (0}}{\text{.1 < }}R{e_{\rm{s}}}{\text{ < 1\;000.0)}} \end{split} (11) 利用球形颗粒沉降试验数据对上述沉降阻力系数模型进行参数拟合,发现V. C. Kelessidis等人[20]提出的五参数阻力系数模型具有最佳的拟合优度,其形式为:
{C_{\text{D}}} = \frac{{24}}{{R{e_{\rm{s}}}}}(1 + AR{e_{\rm{s}}}^B) + \frac{C}{{1 + {\dfrac{D}{Re_{\rm{s}}^E}}}} (12) 式中:A,B,C,D和E均为相关系数。
式(12)中,等号右边第一项表示层流条件下阻力系数的下降趋势,第二项表示湍流条件下阻力系数的下降趋势,可以通过在扩展的斯托克斯定律中加入一个复杂的湍流项来预测阻力系数。上述推论符合物理基本规律,即总的拖曳力是任意流动状态下层流和湍流分量的总和[21]。
对196组球形颗粒的沉降试验数据进行拟合回归,得到球形颗粒在幂律流体中的沉降阻力系数:
\begin{split} {C_{\text{D}}} =& \frac{{24}}{{R{e_{\rm{s}}}}}(1 + 0.723R{e_{\rm{s}}}^{0.304}) + \frac{{0.219}}{{1 + \dfrac{{55.03}}{{R{e_{\rm{s}}}^{1.757}}}}}{\text{ }}\\ &\left( {{\text{0}}{\text{.001 < }}R{e_{\rm{s}}} < 848.000} \right) \end{split} (13) 通过对比式(13)与已发表文献中具有代表性的关系式,即式(8)、式(9)和式(11),采用平均相对误差(δMRE)、最大平均相对误差(δMMRE)和均方根对数误差(δRMSLE)等3个统计参数,评估所提出的幂律流体中球形颗粒沉降阻力系数关系式的预测精度,对比结果见表3。
表 3 幂律流体中球形颗粒沉降阻力系数误差统计Table 3. Error statistics of the settlement drag coefficient of spherical particles in power-law fluids颗粒雷诺数范围 模型 预测误差,% δMRE δMMRE δRMSLE 0.001<Res<848.000 式(8) 17.36 23.00 34.94 式(9) 13.31 14.00 32.73 式(11) 20.84 34.00 39.24 式(13) 7.11 8.00 19.72 δMRE 和δRMSLE 的计算方法如下[22]:
{\delta _{{\rm{MRE}}}} = \frac{1}{N}\sum\limits_{i = 1}^N {\frac{{\left| {{C_{{\text{D}},{\rm{c}},i}} - {C_{{\text{D}},{\rm{m}},i}}} \right|}}{{{C_{{\text{D}},{\rm{m}},i}}}}} \times 100\% (14) {\delta _{{\rm{RMSLE}}}} = \sqrt {\frac{1}{N}\sum\limits_{i = 1}^N {{{\left( {\ln {C_{{\text{D}},{\rm{c}},i}} - \ln {C_{{\text{D}},{\rm{m}},i}}} \right)}^2}} } (15) 式中:N为总数;CD, c为预测的阻力系数;CD, m为试验测得的阻力系数。
通过试验得到了颗粒的沉降速度vts,并拟合得到沉降阻力系数CD与颗粒雷诺数Res之间的关系。基于提出的CD–Res相关式,可采用迭代试错法计算颗粒在流体中的沉降阻力系数CD和沉降速度vt,迭代程序如图6所示[23]。
根据提出的球形颗粒阻力系数预测模型(式(13)),采用试错法计算沉降颗粒的阻力系数CD和沉降速度vt,结果见图7和图8。
由图7和表3可知,对于幂律流体,式(8)、式(9)和式(11)的预测值与试验值较为接近,平均相对误差约为17.17%,式(13)的平均相对误差为7.11%,与其他模型相比,3个量化评价参数均有一定程度的降低,对试验结果的预测精度更高。同时,图8所示的球形颗粒沉降速度预测值与试验测量值平均相对误差仅为7.10%,所以本文提出的模型能较好地预测圆球颗粒在幂律流体中的沉降阻力系数CD和沉降速度vt。
3. 页岩岩屑沉降阻力系数模型
基于上述圆球阻力系数预测模型(式(13)),通过引入颗粒圆形度c建立适用于页岩岩屑的沉降阻力系数CD的表达式。在任意给定的雷诺数下,岩屑受到的拖曳力要大于其等效球体的拖曳力[23]。这是因为,岩屑表面的不规则会导致阻力增加和产生更大的流动分离现象,从而与球形颗粒相比沉降速度有所降低[24]。通过试验观察(见图9),相同条件下岩屑阻力系数CD与球形颗粒的阻力系数预测值CD,sph之比略大于1。在高雷诺数下,由于形状的影响,该比值会更大。
通过分析相同条件下页岩岩屑试验得到的阻力系数CD与球形颗粒沉降阻力系数预测值CD,sph的差异性,得到了圆形度函数f(c)作为CD/CD,sph自然对数的函数。确定颗粒形状因子c与CD/CD,sph之间的关系式为:
{C_{\text{D}}} = {C_{{\text{D}},{\rm{sph}}}}\exp \left[ {f\left( c \right)} \right] (16) 在特殊情况下,如c = 1时,页岩岩屑的阻力系数等于相同参数下圆球的阻力系数。即当c = 1时,f(c) = 0。为了确保颗粒为球形时满足CD/CD,sph = 1,结合224组试验数据,通过式(17)确定了f(c)。
f(c) = \alpha Re_{\rm{s}}^\beta {(1 - c)^\eta } (17) 式中:α,β和η为经验系数,可通过非线性拟合得出。
岩屑在幂律流体中阻力系数CD的表达式为:
\begin{split} {C_{\text{D}}} = &{C_{{\text{D}},{\rm{sph}}}}{\rm{exp}}\left[ {0.31R{e_{\rm{s}}}^{0.25}{{(1 - c)}^{0.19}}} \right]{\text{ }}\\ &\left( {{\text{0}}{\text{.001 < }}R{e_{\rm{s}}}{\text{ < 99.000}}} \right) \end{split} (18) 图10所示为式(18)计算所得页岩岩屑沉降阻力系数CD与试验测得沉降阻力系数CD之间的关系。用该模型对页岩岩屑的沉降阻力系数进行了预测,预测结果的平均相对误差为7.68%,均方根对数误差为0.010 9,最大平均相对误差为25.35%。
利用式(18)计算了页岩岩屑在幂律流体中的沉降速度,并与试验测得的沉降速度进行了对比(见图11)。对比结果表明,模型预测页岩岩屑在幂律流体中沉降速度的平均相对误差为6.93%。虽然模型预测结果具有一定程度的分散性,但数据在直线上分布良好,说明该模型能较好地预测页岩岩屑在幂律流体中的沉降速度。
4. 结 论
1)在颗粒雷诺数相同条件下,页岩岩屑的阻力系数随着圆形度减小而增大,阻力系数随雷诺数增大而减小,但在高雷诺数条件下减小的趋势变缓。
2)相较于具有规则形状的非球形颗粒,测量像岩屑颗粒这样形状高度不规则粗糙颗粒的表面积比较困难,也难以在现场作业中实现。事实上,如何精确测量不规则形状颗粒的表面积,也是圆形度计算中的一个难点。引入二维的侧视面几何参数来预测阻力系数,其精度与引入圆球形模型的预测精度相近。
3)根据本文建立的岩屑阻力系数预测模型,使用迭代法计算岩屑沉降速度,平均相对误差为6.93%,模型预测结果与试验结果吻合较好。预测模型可为大庆油田古龙页岩油钻井工程现场实践中的井眼清洁和水力参数优化提供理论指导。
4)由于受试验材料及试验可实现程度的限制,本文在进行颗粒沉降试验时并未使用宾汉流体。对于宾汉流体,沉降阻力系数计算能否采用赫–巴流体(n=1)中的阻力系数预测模型,仍存在不确定性。同时,对高雷诺数以及颗粒群的沉降试验应是今后重点关注和探索的方向之一。
-
表 1 所设计声学超材料颗粒的组成
Table 1 Composition of designed acoustic metamaterial particles
编号 设计粒径/mm 材料组成 厚度/mm 弹性模量/GPa 材料密度/(g·cm−3) 泊松比 宏观密度/(g·cm−3) A 1 钢铁 0.2 200.00 8.00 0.3 1.5 橡胶 0.2 0.01 0.93 0.4 环氧树脂 0.1 0.20 1.20 0.4 B 2 钢铁 0.6 200.00 8.00 0.3 2.3 橡胶 0.3 0.01 0.93 0.4 环氧树脂 0.1 0.20 1.20 0.4 C 4 钢铁 1.0 200.00 8.00 0.3 1.9 橡胶 0.8 0.01 0.93 0.4 环氧树脂 0.2 0.20 1.20 0.4 -
[1] 张波,罗方伟,孙秉才,等. 深层油气井井筒完整性检测方法[J]. 石油钻探技术,2021,49(5):114–120. doi: 10.11911/syztjs.2021127 ZHANG Bo, LUO Fangwei, SUN Bingcai, et al. A method for wellbore integrity detection in deep oil and gas wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114–120. doi: 10.11911/syztjs.2021127
[2] 牛德成,苏远大. 基于声波远探测的浅海软地层邻井井眼成像方法[J]. 石油钻探技术,2022,50(6):21–27. doi: 10.11911/syztjs.2022111 NIU Decheng, SU Yuanda. Adjacent borehole imaging method based on acoustic remote detection in shallow unconsolidated formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21–27. doi: 10.11911/syztjs.2022111
[3] 李宁,刘鹏,范华军,等. 基于阵列声波测井的井下多尺度压裂效果评价方法[J]. 石油钻探技术,2024,52(1):1–7. doi: 10.11911/syztjs.2024001 LI Ning, LIU Peng, FAN Huajun, et al. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1–7. doi: 10.11911/syztjs.2024001
[4] 陈斌,蔺敬旗,李兆春,等. 阵列声波测井在页岩油体积压裂效果评价中的应用[J]. 断块油气田,2021,28(4):550–554. CHEN Bin, LIN Jingqi, LI Zhaochun, et al. Application of array acoustic logging in shale oil volume fracturing effect evaluation[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 550–554.
[5] 祁晓,张璋,李东,等. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法[J]. 石油钻探技术,2023,51(6):128–134. QI Xiao, ZHANG Zhang, LI Dong, et al. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128–134.
[6] 孙小芳,刘峰,张聪慧,等. 慢速地层偶极声波远探测井眼成像发射频率优选[J]. 石油钻探技术,2023,51(1):98–105. doi: 10.11911/syztjs.2023017 SUN Xiaofang, LIU Feng, ZHANG Conghui, et al. Emission frequency optimization of borehole imaging for dipole acoustic remote detection of slow formations[J]. Petroleum Drilling Techniques, 2023, 51(1): 98–105. doi: 10.11911/syztjs.2023017
[7] 赵辉,齐怀彦,王凯,等. 致密砂岩油藏测井响应特征及有利区评价[J]. 特种油气藏,2023,30(5):35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005 ZHAO Hui, QI Huaiyan, WANG Kai, et al. Characteristics of well logging response and evaluation of favorable zones in tight sandstone reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 35–41. doi: 10.3969/j.issn.1006-6535.2023.05.005
[8] 刘美成. 致密储层测井评价技术及发展方向[J]. 特种油气藏,2022,29(4):12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002 LIU Meicheng. Logging evaluation technology and further development of tight reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(4): 12–20. doi: 10.3969/j.issn.1006-6535.2022.04.002
[9] 夏百战,杨天智. 声学超材料和声子晶体研究进展[J]. 动力学与控制学报,2023,21(7):1–4 . XIA Baizhan, YANG Tianzhi. Progress in acoustic metamaterials and phononic crystals[J]. Journal of Dynamics and Control, 2023, 21(7): 1–4.
[10] PALISCH T, AL-TAILJI W, BARTEL L, et al. Far-field proppant detection using electromagnetic methods-Latest field results[R]. SPE 184880, 2017.
[11] RAMM A G. A recipe for making materials with negative refraction in acoustics[J]. Physics Letters A, 2008, 372(13): 2319–2321. doi: 10.1016/j.physleta.2007.11.037
[12] ZHAO Honggang, WEN Jihong, YU Dianlong, et al. Low-frequency acoustic absorption of localized resonances: experiment and theory[J]. Journal of Applied Physics, 2010, 107(2): 023519. doi: 10.1063/1.3284943
[13] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734–1736.
[14] MILLER Q R S, NUNE S K, SCHAEF H T, et al. Microporous and flexible framework acoustic metamaterials for sound attenuation and contrast agent applications[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44226–44230.
[15] MILLER Q R S, SCHAEF H T, NUNE S K, et al. Geophysical monitoring with seismic metamaterial contrast agents[R]. URTEC 2019-1123, 2019.
[16] NUNE S K, MILLER Q R S, SCHAEF H T, et al. Transport of polymer-coated metal-organic framework nanoparticles in porous media[J]. Scientific Reports, 2022, 12(1): 13962. doi: 10.1038/s41598-022-18264-y
[17] POLLOCK J, VEEDU V, ELSHAHAWI H. Acoustically responsive cement for enhanced well integrity[R]. OTC 29021, 2018.
[18] 张宏宽,周萧明. 声波超材料设计的力学原理与进展[J]. 固体力学学报,2016,37(5):387–397. ZHANG Hongkuan, ZHOU Xiaoming. Mechanics concepts and advances of acoustic metamaterials design[J]. Chinese Journal of Solid Mechanics, 2016, 37(5): 387–397.