井下声学造影超材料颗粒设计与性能模拟

Design and Performance Simulation of Acoustic Metamaterial Particle for Downhole Imaging

  • 摘要: 由于传统声波探测技术依赖地层物性差异,因此识别范围和精度受限。为解决该问题,基于质量弹簧结构模型,利用声学超材料独特微观结构的声学原理,设计了3层结构的声学超材料颗粒,优化了材料的结构尺寸,优选了材料的组成,建立了超材料颗粒的声学特征模型,以表征被动发声超材料颗粒特殊的声频和声强特性。采用有限元数值模拟软件模拟了声学超材料颗粒的性能, 结果表明,声学超材料颗粒具备特殊声学频带,且特征频率随着粒径减小逐渐升高。在声学禁带频率范围内,声波无法穿透超材料颗粒群,大部分被反射;在声学禁带频率范围外,声波可以穿透超材料颗粒群。声学超材料颗粒具备井下声学强化造影能力,具有评价井筒完整性和监测压裂裂缝的潜力。

     

    Abstract: The traditional acoustic detection technology depends on the difference in physical properties of formation, and the range and accuracy of information identification are limited. Therefore, acoustic metamaterial particles with a three-layer structure were designed by using the unique microstructure principle of acoustic metamaterials based on the mass-spring structure model. The material structure size was optimized, and the optimal material composition was selected. As a result, the acoustic characteristic model of metamaterial particles was established to characterize the special acoustic frequency and acoustic strength characteristics of passive acoustic metamaterial particles. The particle properties of acoustic metamaterials were simulated by finite element numerical simulation software. The results show that the acoustic metamaterial particles have special acoustic frequency bands, and the characteristic frequency gradually increases as the particle size decreases. Within the frequency range of the acoustic band gap, the acoustic wave cannot penetrate the metamaterial particle cluster, and most of them are reflected. Outside the acoustic band gap, the acoustic wave can penetrate the metamaterial particle cluster. The acoustic metamaterial particles can strengthen the downhole imaging and show potential for evaluating wellbore integrity and monitoring fractures.

     

/

返回文章
返回