Abstract:
During the operation of shale oil horizontal wells in the second section of Funing Formation in Subei Basin, problems occur such as casing program await to be optimized, poor wellbore stability, difficulty in well trajectory control, and high well control risks, etc. Therefore, based on integration of geology and engineering, a layered speed-up technology was developed, including casing programs and well trajectory optimization, polycrystalline diamond compact (PDC) drill bit personalization design, and an optimal bottom hole assembly (BHA) selection. In addition, a well trajectory control technology for encountering fault during drilling that integrates directional drilling, logging, and steering was studied. The supporting technologies such as enhanced parameter drilling, friction and torque reduction for speed-up, white oil-based drilling fluid for strong sealing, and double-density drilling fluid for fine pressure control, and safety drilling with anti-channeling induced by pressure were developed. As a result, the key technologies for enhancing the drilling speed of fault block shale oil horizontal wells in Subei Basin were formed. These technologies were applied in five shale oil horizontal wells. As a result, the drilling cycle was greatly shortened, and the average rate of penetration (ROP) increased from 7.19 m/h to 16.47 m/h. The research results show that these technologies meet the drilling speed-up requirements for shale oil horizontal wells and provide technical support for the efficient and large-scale development of the shale oil.