Research and On-Site Application of “Stable Fluid Volume” Pressure Control Drilling Technology
-
摘要:
为了解决现有控压钻井工艺复杂和设备配套多的问题,并实现平衡压力钻井,从井内压力平衡的监控与认定方法入手,分析了井内压力平衡关系和控压钻井现状,研究了“液量稳定”控压原理、工艺与实现方法,形成了“恒液面”自动控制技术,实现了“液量稳定”控压钻进时的自动控制,钻井现场液面控制精度小于25 mm;钻井过程中可以根据循环罐液面变化调节节流阀,以保持“液量稳定”,实现井底压力与地层压力的实时平衡,进行平衡压力钻井。现场应用时,利用35 MPa旋转防喷器,以井口压力不大于7 MPa为原则,采用人工手动节流控制方法顺利钻穿了压力系数大于2.0、“零”压力窗口的盐水层和压力系数大于1.8、“零”压力窗口的灰岩裂缝性气层,解决了土库曼斯坦阿姆河右岸B区块的钻井难题。研究结果表明,与其他控压方式相比,“液量稳定”控压钻井技术的配套设备简化,控压工艺简单,具有较好的现场实用性。
Abstract:In order to solve the problems of complex pressure control drilling technologies and excessive equipment matching and achieve balanced pressure drilling, the monitoring and identification methods of pressure balance in the well were first studied. The in-well pressure balance relationship and the state of pressure control drilling were analyzed. The pressure control principles, processes, and implementation method of “stable fluid volume” were studied, forming the "constant fluid level" automatic control technology to enable automatic control in “stable fluid volume” pressure control drilling. The fluid level control accuracy on the drilling site was maintained within 25 mm. The throttle valve could be adjusted to ensure “stable fluid volume” according to the changes in the circulating tank fluid level during drilling. This facilitated real-time balance between bottomhole pressure and formation pressure and ensured balanced pressure drilling. In on-site applications, a 35 MPa rotary blowout preventer was utilized, with a wellhead pressure not exceeding 7 MPa, and manual throttling control was adopted to successfully drill through the saltwater layer with a pressure coefficient of greater than 2.0 and zero pressure window, as well as the limestone fractured gas layer with a pressure coefficient of greater than 1.8 and zero pressure window, solving the drilling problem in Block B on the right bank of the Amu Darya River in Turkmenistan. Research has shown that compared with other pressure control methods, the supporting equipment of “stable fluid volume”pressure control drilling technology is simplified; the pressure control process is simple, and it has good on-site application value.
-
-
-
[1] 周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术,2019,47(3):68–74. doi: 10.11911/syztjs.2019071 ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74. doi: 10.11911/syztjs.2019071
[2] 李群生,朱礼平,李果,等. 基于井下流量测量的微流量控制系统[J]. 石油钻探技术,2012,40(3):23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005 LI Qunsheng, ZHU Liping, LI Guo, et al. Micro-flow control system based on downhole flow measurement[J]. Petroleum Drilling Techniques, 2012, 40(3): 23–27. doi: 10.3969/j.issn.1001-0890.2012.03.005
[3] 孔祥伟,林元华,邱伊婕. 微流量控压钻井中节流阀动作对环空压力的影响[J]. 石油钻探技术,2014,42(3):22–26. KONG Xiangwei, LIN Yuanhua, QIU Yijie. Effect of choke valve action on annular pressure with micro-flux control in MPD drilling[J]. Petroleum Drilling Techniques, 2014, 42(3): 22–26.
[4] 李宗清,燕修良,陈永明,等. 三参数自动控压钻井系统的研制与试验[J]. 石油钻探技术,2012,40(6):99–103. doi: 10.3969/j.issn.1001-0890.2012.06.021 LI Zongqing, YAN Xiuliang, CHEN Yongming, et al. Development and test of three-parameter automatic pressure control drilling system[J]. Petroleum Drilling Techniques, 2012, 40(6): 99–103. doi: 10.3969/j.issn.1001-0890.2012.06.021
[5] 杨雄文,周英操,方世良,等. 控压钻井分级智能控制系统设计与室内试验[J]. 石油钻探技术,2011,39(4):13–18. doi: 10.3969/j.issn.1001-0890.2011.04.003 YANG Xiongwen, ZHOU Yingcao, FANG Shiliang, et al. Design and laboratory test of hierarchical intelligent control system for managed pressure drilling[J]. Petroleum Drilling Techniques, 2011, 39(4): 13–18. doi: 10.3969/j.issn.1001-0890.2011.04.003
[6] 张涛,柳贡慧,李军,等. 精细控压多级并联节流管汇系统研究[J]. 石油钻探技术,2012,40(2):98–103. doi: 10.3969/j.issn.1001-0890.2012.02.019 ZHANG Tao, LIU Gonghui, LI Jun, et al. Research on multi-level parallel choke manifold system[J]. Petroleum Drilling Techniques, 2012, 40(2): 98–103. doi: 10.3969/j.issn.1001-0890.2012.02.019
[7] 郗凤亮,徐朝阳,马金山,等. 控压钻井自动分流管汇系统设计与数值模拟研究[J]. 石油钻探技术,2017,45(5):23–29. doi: 10.11911/syztjs.201705005 XI Fengliang, XU Chaoyang, MA Jinshan, et al. Design and numerical simulation of an automatic diverter manifold in managed pressure drilling[J]. Petroleum Drilling Techniques, 2017, 45(5): 23–29. doi: 10.11911/syztjs.201705005
[8] 王果. 基于三级反馈调节的控压钻井回压自动调控方法[J]. 石油钻采工艺,2019,41(4):441–447. doi: 10.13639/j.odpt.2019.04.007 WANG Guo. Automatic backpressure control techniques of MPD drilling based on three-layer feedback regulation method[J]. Oil Drilling & Production Technology, 2019, 41(4): 441–447. doi: 10.13639/j.odpt.2019.04.007
[9] 蒋振新,李军,郭勇,等. 井下双梯度控压钻井井筒多相流动规律[J]. 断块油气田,2024,31(5):936–944. doi: 10.6056/dkyqt202405025 JIANG Zhenxin, LI Jun, GUO Yong, et al. Multiphase flow law in wellbore during downhole dual-gradient controlled pressure drilling[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 936–944. doi: 10.6056/dkyqt202405025
[10] 集团公司井控培训教材编写组. 钻井井控工艺技术[M]. 东营:中国石油大学出版社,2008:92-93. Compilation Group of Well Control Training Textbooks for Group Companies. Drilling well control technology[M]. Dongying: China University of Petroleum Press, 2008: 92-93.
[11] 张桂林. 土库曼斯坦亚苏尔哲别油田控压钻井技术[J]. 石油钻探技术,2010,38(6):37–41. doi: 10.3969/j.issn.1001-0890.2010.06.009 ZHANG Guilin. Application of managed pressure drilling technology in Azores Area, Turkmenistan[J]. Petroleum Drilling Techniques, 2010, 38(6): 37–41. doi: 10.3969/j.issn.1001-0890.2010.06.009
[12] 张桂林. “液量稳定” 控压钻井方法[J]. 石油钻探技术,2013,41(4):54–58. doi: 10.3969/j.issn.1001-0890.2013.04.012 ZHANG Guilin. “Liquid volume stable” managed pressure drilling method[J]. Petroleum Drilling Techniques, 2013, 41(4): 54–58. doi: 10.3969/j.issn.1001-0890.2013.04.012
[13] 张桂林. 土库曼斯坦阿姆河右岸B区块钻井关键技术[J]. 石油钻探技术,2015,43(6):1–6. doi: 10.11911/syztjs.201506001 ZHANG Guilin. Key drilling technologies in the block B at the right bank of Amu Darya, Turkmenistan[J]. Petroleum Drilling Techniques, 2015, 43(6): 1–6. doi: 10.11911/syztjs.201506001
[14] 陈永明. 全过程欠平衡钻井中的不压井作业[J]. 石油钻探技术,2006,34(2):22–25. doi: 10.3969/j.issn.1001-0890.2006.02.006 CHEN Yongming. No-killing operations in whole course underbalanced drilling[J]. Petroleum Drilling Techniques, 2006, 34(2): 22–25. doi: 10.3969/j.issn.1001-0890.2006.02.006
[15] 孙凯,梁海波,李黔,等. 控压钻井泥浆帽设计方法研究[J]. 石油钻探技术,2011,39(1):36–39. doi: 10.3969/j.issn.1001-0890.2011.01.008 SUN Kai, LIANG Haibo, LI Qian, et al. Research on mud cap design of managed pressure drilling[J]. Petroleum Drilling Techniques, 2011, 39(1): 36–39. doi: 10.3969/j.issn.1001-0890.2011.01.008
[16] 彭明佳,刘伟,王瑛,等. 精细控压钻井重浆帽设计及压力控制方法[J]. 石油钻采工艺,2015,37(4):16–19. PENG Mingjia, LIU Wei, WANG Ying, et al. Design of heavy grout and pressure control method for fine pressure-control drilling[J]. Oil Drilling & Production Technology, 2015, 37(4): 16–19.
-
期刊类型引用(7)
1. 侯华丹,于雷. 基于弹性网眼体的油基钻井液堵漏体系研究与应用. 海洋石油. 2023(01): 55-58 . 百度学术
2. 马成云,窦益华,邓金根,冯永存,艾二鑫,赵凯,惠城. 动态裂缝堵漏试验装置的研制与应用. 石油机械. 2023(12): 25-30 . 百度学术
3. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 . 百度学术
4. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 . 本站查看
5. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 . 百度学术
6. 田林海,屈刚,雷鸣,于德成,张伟. 玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨. 石油钻探技术. 2019(01): 20-24 . 本站查看
7. 范胜,宋碧涛,陈曾伟,李大奇,刘金华,成增寿. 顺北5-8井志留系破裂性地层提高承压能力技术. 钻井液与完井液. 2019(04): 431-436 . 百度学术
其他类型引用(3)