仿生蠕动钻进工具的研制及现场试验

余丽彬, 张志刚, 姜朝民, 徐辉, 张宏阜, 韩绪睿

余丽彬,张志刚,姜朝民,等. 仿生蠕动钻进工具的研制及现场试验[J]. 石油钻探技术,2025,53(1):55−59. DOI: 10.11911/syztjs.2024113
引用本文: 余丽彬,张志刚,姜朝民,等. 仿生蠕动钻进工具的研制及现场试验[J]. 石油钻探技术,2025,53(1):55−59. DOI: 10.11911/syztjs.2024113
YU Libin, ZHANG Zhigang, JIANG Zhaomin, et al. Development and field testing of the bionic peristaltic drilling tool [J]. Petroleum Drilling Techniques, 2025, 53(1):55−59. DOI: 10.11911/syztjs.2024113
Citation: YU Libin, ZHANG Zhigang, JIANG Zhaomin, et al. Development and field testing of the bionic peristaltic drilling tool [J]. Petroleum Drilling Techniques, 2025, 53(1):55−59. DOI: 10.11911/syztjs.2024113

仿生蠕动钻进工具的研制及现场试验

详细信息
    作者简介:

    余丽彬(1969—),女,四川眉山人,1993年毕业于石油大学(华东)应用化学专业,高级工程师,主要从事定向钻井技术研究与现场应用工作。E-mail:yulb1220@163.com

  • 中图分类号: TE921+.2

Development and Field Testing of the Bionic Peristaltic Drilling Tool

  • 摘要:

    为提高长水平段水平井钻压传递效率,模仿蚯蚓的生理结构和运动原理,研制了一种仿生蠕动钻进工具。该工具利用一个脉冲发生器驱动多个振动短节,能够在实现钻柱蠕动的同时降低水力压耗。室内测试结果表明:排量为30 L/s时,仿生蠕动钻进工具的压力波动幅值接近2 MPa、振动频率为6.5 Hz,3个振动短节的振动幅度超过5 mm。该工具在新疆油田JHW8X−3X井水平段进行了现场试验,进尺815.00 m,平均机械钻速12.48 m/h,与邻井水平段采用振荡螺杆和水力振荡器等减阻提速工具相比,平均机械钻速提高了15.5%。研究表明,仿生蠕动钻进工具能够缓解钻柱托压、提高钻压传递效率,为提高长水平段水平井的钻进效率提供了新的技术手段。

    Abstract:

    By mimicking the physiological structure and movement principles of earthworms, a bionic peristaltic drilling tool was developed to enhance the transfer efficiency of weight on bit (WOB) in long horizontal sections of horizontal wells. The tool used a pulse generator to drive multiple vibration subs, which enabled the drill string to perform peristaltic motion while reducing hydraulic pressure loss. Laboratory tests show that at a flow rate of 30 L/s, the tool’s pressure fluctuation amplitude reaches nearly 2 MPa, with a vibration frequency of 6.5 Hz, and the displacement amplitude of the three vibration subs exceeds 5 mm. The field test is conducted in the horizontal section of Well JHW83−31 in Xinjiang Oilfield, with drilling footage of 815 m and an average rate of penetration (ROP) of 12.48 m/h achieved. Compared with adjacent wells adopting drag reduction and speed increase tools such as oscillating screws and hydraulic oscillators, the average ROP increases by 15.5%. The field test results indicate that the bionic peristaltic drilling tool can alleviate the problem of drill string friction, promote the transfer efficiency of WOB, and offer an effective solution for improving the drilling efficiency of long horizontal sections in horizontal wells.

  • 图  1   仿生蠕动钻井工具的结构

    1. 芯轴;2. 上接头;3. 碟簧;4. 套筒;5. 活塞;6. 密封件;7. 下接头;8. 套筒;9. 多头螺杆;10. 柔性杆;11. 上盘阀;12. 下盘阀;13. 下接头

    Figure  1.   Structure of bionic peristaltic drilling tool

    图  2   仿生蠕动钻井工具钻具组合

    Figure  2.   Assembly of bionic peristaltic drilling tool

    图  3   不同排量下仿生蠕动钻井工具瞬时压力的波动规律

    Figure  3.   Fluctuation law of instantaneous pressure of bionic peristaltic drilling tool under different flow rates

    图  4   不同排量下压力波动的幅频曲线

    Figure  4.   Amplitude frequency curve of pressure fluctuation under different flow rates

    表  1   试验井JHW8X−3X与邻井机械钻速的对比

    Table  1   Comparison of ROP between test well JHW83−31 and adjacent wells

    井名入井井深/m出井井深/m进尺/m纯钻时间/h机械钻速/(m·h−1
    JHW8X-3X井4 840.005 655.00815.0065.3312.48
    JHW8X-1X井4 774.005 761.00987.00134.407.34
    JHW8X-5X井4 357.005 699.001 342.00108.8312.33
    JHW8X-4X井4 920.005 810.00890.0075.28011.82
    JHW8X-2X井5 070.005 660.00590.00490.0012.04
    5 660.005 860.00200.0020.179.92
    JHW8X-6X井4 454.005 749.001 295.00106.5012.16
    5 749.005 873.00124.008.1715.18
    下载: 导出CSV
  • [1] 明瑞卿,张时中,王海涛,等. 国内外水力振荡器的研究现状及展望[J]. 石油钻探技术,2015,43(5):116–122.

    MING Ruiqing, ZHANG Shizhong, WANG Haitao, et al. Research status and prospect of hydraulic oscillator worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116–122.

    [2] 孔令镕,王瑜,邹俊,等. 水力振荡减阻钻进技术发展现状与展望[J]. 石油钻采工艺,2019,41(1):23–30.

    KONG Lingrong, WANG Yu, ZOU Jun, et al. Development status and prospect of hydro-oscillation drag reduction drilling technology[J]. Oil Drilling & Production Technology, 2019, 41(1): 23–30.

    [3] 王鹏,倪红坚,王瑞和,等. 调制式振动对大斜度井减摩阻影响规律[J]. 中国石油大学学报(自然科学版),2014,38(4):93–97. doi: 10.3969/j.issn.1673-5005.2014.04.013

    WANG Peng, NI Hongjian, WANG Ruihe, et al. Influence laws of modulated vibration on friction reduction in inclined-wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(4): 93–97. doi: 10.3969/j.issn.1673-5005.2014.04.013

    [4] 冯强,陈世春,王建龙,等. 振动减摩阻工具振动参数及安放位置研究[J]. 石油钻探技术,2018,46(4):78–83.

    FENG Qiang, CHEN Shichun, WANG Jianlong, et al. Research on vibration parameters and determining the position of a vibration friction reducing tool[J]. Petroleum Drilling Techniques, 2018, 46(4): 78–83.

    [5] 黄文君,石小磊,高德利. 水平钻井振动减阻器参数优化设计[J]. 天然气工业,2023,43(8):108–115. doi: 10.3787/j.issn.1000-0976.2023.08.010

    HUANG Wenjun, SHI Xiaolei, GAO Deli. Optimal design method of vibration drag reduction parameters in horizontal well drilling[J]. Natural Gas Industry, 2023, 43(8): 108–115. doi: 10.3787/j.issn.1000-0976.2023.08.010

    [6] 王学迎,张淙胜,张恒,等. 基于有效牵引力系数的水力振荡器减阻效果评价方法[J]. 西安石油大学学报(自然科学版),2023,38(6):133–139. doi: 10.3969/j.issn.1673-064X.2023.06.017

    WANG Xueying, ZHANG Congsheng, ZHANG Heng, et al. A evaluation method for drag reduction effect of hydraulic oscillator based on effective tractoring force coefficient[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2023, 38(6): 133–139. doi: 10.3969/j.issn.1673-064X.2023.06.017

    [7] 穆总结,李根生,臧传贞,等. 振动减阻工具的研制与现场试验[J]. 石油机械,2021,49(12):42–47.

    MU Zongjie, LI Gensheng, ZANG Chuanzhen, et al. Development and field test of vibration drag reduction tool[J]. China Petroleum Machinery, 2021, 49(12): 42–47.

    [8] 李建亭,胡金建,罗恒荣. 低压耗增强型水力振荡器的研制与现场试验[J]. 石油钻探技术,2022,50(1):71–75. doi: 10.11911/syztjs.2021137

    LI Jianting, HU Jinjian, LUO Hengrong. Development and field tests of an enhanced hydraulic oscillator with low pressure loss[J]. Petroleum Drilling Techniques, 2022, 50(1): 71–75. doi: 10.11911/syztjs.2021137

    [9] 田加林,杨应林,DAI Liming,等. 新型减摩阻工具的射流振荡动力学机理[J]. 天然气工业,2019,39(5):99–106. doi: 10.3787/j.issn.1000-0976.2019.05.012

    TIAN Jialin, YANG Yinglin, DAI Liming, et al. Dynamic mechanism of fluidic oscillation of a new friction reducing tool[J]. Natural Gas Industry, 2019, 39(5): 99–106. doi: 10.3787/j.issn.1000-0976.2019.05.012

    [10]

    GEE R, HANLEY C, HUSSAIN R, et al. Axial oscillation tools vs. lateral vibration tools for friction reduction: what’s the best way to shake the pipe?[R]. SPE 173024, 2015.

    [11]

    JESUS G, SARAH B, JOHN M, et al. Field-verified modeling compares weight transfer methods in horizontal wells[R]. SPE 194169, 2019.

    [12] 高科,孙友宏,高润峰,等. 仿生非光滑理论在钻井工程中的应用与前景[J]. 石油勘探与开发,2009,36(4):519–522. doi: 10.1016/S1876-3804(09)60143-9

    GAO Ke, SUN Youhong, GAO Runfeng, et al. Application and prospect of bionic non-smooth theory in drilling engineering[J]. Petroleum Exploration and Development, 2009, 36(4): 519–522. doi: 10.1016/S1876-3804(09)60143-9

    [13]

    MENCIASSI A, GORINI S, PERNORIO G, et al. A SMA actuated artificial earthworm[C]//IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. Piscataway, NJ: IEEE Press, 2004: 3282−3287.

    [14]

    MEZOFF S, PAPASTATHIS N, TAKESIAN A, et al. The biomechanical and neural control of hydrostatic limb movements in Manduca sexta[J]. Journal of Experimental Biology, 2004, 207(17): 3043–3053. doi: 10.1242/jeb.01136

    [15]

    ZUO J, YAN G, GAO Z. A micro creeping robot for colonoscopy based on the earthworm[J]. Journal of Medical Engineering & Technology, 2005, 29(1): 1–7.

    [16]

    KIM B, LEE M G, LEE Y P, et al. An earthworm-like micro robot using shape memory alloy actuator[J]. Sensors and Actuators A: Physical, 2006, 125(2): 429–437. doi: 10.1016/j.sna.2005.05.004

    [17]

    REN Luquan. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines[J]. Science in China Series E: Technological Sciences, 2009, 52(2): 273–284. doi: 10.1007/s11431-009-0042-3

    [18]

    TADAMI N, NAGAI M, NAKATAKE T, et al. Curved excavation by a sub-seafloor excavation robot[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE Press, 2017: 4950−4956.

    [19]

    ISAKA K, TSUMURA K, WATANABE T, et al. Development of underwater drilling robot based on earthworm locomotion[J]. IEEE Access, 2019, 7: 103127–103141. doi: 10.1109/ACCESS.2019.2930994

    [20]

    GE J Z, CALDERÓN A A, CHANG Longlong, et al. An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion[J]. Bioinspiration & Biomimetics, 2019, 14(3): 036004.

    [21]

    NAKAMURA T, HIDAKA Y, YOKOJIMA M, et al. Development of peristaltic crawling robot with artificial rubber muscles attached to large intestine endoscope[J]. Advanced Robotics, 2012, 26(10): 1161–1182. doi: 10.1080/01691864.2012.687139

    [22]

    WANG Peng, NI Hongjian, WANG Xueying, et al. Research on the characteristics of earthworm-like vibration drilling[J]. Journal of Petroleum Science and Engineering, 2018, 160: 60–71. doi: 10.1016/j.petrol.2017.10.027

    [23]

    WANG Peng, CAO Jifei, ZHANG Heng, et al. Axial load peristaltic transfer mechanism of the drillstring to improve penetration rate[J]. SPE Journal, 2024, 29(7): 3472–3487. doi: 10.2118/219737-PA

  • 期刊类型引用(4)

    1. 曾义金,金衍,周英操,陈军海,李牧,光新军,卢运虎. 深层油气钻采技术进展与展望. 前瞻科技. 2023(02): 32-46 . 百度学术
    2. 王志战. 中国石化录井技术新进展与发展方向思考. 石油钻探技术. 2023(04): 124-133 . 本站查看
    3. 王志战,杜焕福,李香美,牛强. 陆相页岩油录井重点发展领域与技术体系构建. 石油钻探技术. 2021(04): 155-162 . 本站查看
    4. 马永生,黎茂稳,蔡勋育,徐旭辉,胡东风,曲寿利,李根生,何登发,肖贤明,曾义金,饶莹,马晓潇. 海相深层油气富集机理与关键工程技术基础研究进展. 石油实验地质. 2021(05): 737-748 . 百度学术

    其他类型引用(0)

图(4)  /  表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  36
  • PDF下载量:  64
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-06-02
  • 修回日期:  2024-11-12
  • 网络出版日期:  2024-11-24
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回