鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术

史配铭, 倪华峰, 贺会锋, 石崇东, 李录科, 张延兵

史配铭,倪华峰,贺会锋,等. 鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术[J]. 石油钻探技术,2025,53(1):17−23. DOI: 10.11911/syztjs.2024112
引用本文: 史配铭,倪华峰,贺会锋,等. 鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术[J]. 石油钻探技术,2025,53(1):17−23. DOI: 10.11911/syztjs.2024112
SHI Peiming, NI Huafeng, HE Huifeng, et al. Key technologies for safe drilling in horizontal section of deep coal rock gas horizontal well in Ordos Basin [J]. Petroleum Drilling Techniques, 2025, 53(1):17−23. DOI: 10.11911/syztjs.2024112
Citation: SHI Peiming, NI Huafeng, HE Huifeng, et al. Key technologies for safe drilling in horizontal section of deep coal rock gas horizontal well in Ordos Basin [J]. Petroleum Drilling Techniques, 2025, 53(1):17−23. DOI: 10.11911/syztjs.2024112

鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术

基金项目: 中国石油集团川庆钻探工程有限公司长庆钻井总公司致密气藏工程技术中心重点科技计划项目“盆地东部本溪组8#煤岩层水平井储层安全快速钻完井关键技术研究”(编号:CQ2024B−8−18−3−Z)。
详细信息
    作者简介:

    史配铭(1984—),男,甘肃景泰人,2008年毕业于重庆科技学院石油工程专业,高级工程师,主要从事水平井、小井眼定向井、煤岩气及储气库钻完井技术研究与管理工作。E-mail:zjs3spm@cnpc.com.cn

  • 中图分类号: TE21

Key Technologies for Safe Drilling in Horizontal Section of Deep Coal Rock Gas Horizontal Well in Ordos Basin

  • 摘要:

    鄂尔多斯盆地东部气田深层煤岩气水平井目的层本溪组8#煤层埋藏深,非均质性强,钻井过程中存在机械钻速低、井壁易失稳垮塌、井下故障复杂频发、水平段延伸难度大和完井套管下入困难等技术难点。为此,在分析本溪组8#煤岩地层特征和钻井技术难点的基础上,进行了倒划眼高效PDC钻头研制、提速工具优选和无稳定器防卡导向钻具组合优化,研究了水平段精细导向井眼轨迹控制技术、旋转下套管技术及微纳米强抑制高效水基钻井液技术,形成了鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术。该技术在鄂尔多斯盆地东部气田绥德−米脂区块10口深层煤岩气水平井进行了应用,应用井在水平段钻进过程中未发生井壁失稳等井下故障,顺利钻至设计完钻井深,套管顺利下至设计位置,平均机械钻速9.00 m/h,较未应用该技术邻井NL1H井提高了48.51%。现场应用表明,鄂尔多斯盆地深层煤岩气水平井水平段安全钻井关键技术可以克服该盆地东部气田深层煤岩气水平井水平段钻进过程中的技术难点,提高水平段机械钻速及煤岩储层的钻遇率,为该盆地深层媒岩气的开发提供技术支撑。

    Abstract:

    In the target layer of the deep coal rock gas horizontal well in the eastern gas field of Ordos Basin, the 8# coal seam of the Benxi Formation is deeply buried and has strong heterogeneity. During the drilling process, there are technical difficulties such as low rate of penetration (ROP), easy instability and collapse of the wellbore, complex and frequent downhole faults, difficult extension of the horizontal section, and challenging completion casing running. Therefore, on the basis of analyzing the characteristics of the 8# coal seam of the Benxi Formation and technical difficulties during drilling, the optimization of high-efficiency PDC bit and speed-up tool for reverse reaming, optimization of steering drilling tool assembly without stabilizer for sticking prevention, fine steering trajectory control technology for horizontal sections, rotary casing running technology, and micro-nano strong inhibition of high-efficiency water-based drilling fluid system technology were conducted, and key technologies for safe drilling in horizontal sections of deep coal rock gas horizontal wells in Ordos Basin were developed. The technologies were applied to 10 deep coal rock gas horizontal wells in the Suide–Mizhi Block of the eastern gas field of Ordos Basin. No downhole faults such as wellbore instability occurred in the drilling process of horizontal sections, and the wells were successfully drilled to the designed completion depth. The casing was smoothly run to the designed position, with an average ROP of 9.00 m/h, indicating a 48.51% increase compared with the adjacent Well NL1H without the technologies applied. Field applications show that the key technologies for safe drilling in horizontal sections of deep coal rock gas horizontal wells in Ordos Basin can overcome the technical difficulties in the drilling process of horizontal sections of deep coal rock gas horizontal wells in the eastern gas fields of the basin, improve the mechanical drilling rate of the horizontal sections and the drilling rate of the coal rock reservoir, and provide technical support for the development of deep coal rock gas in the basin.

  • 图  1   倒划眼高效PDC钻头示意

    Figure  1.   High-efficiency PDC bit for reverse reaming

    表  1   煤岩层气储层岩性分析结果

    Table  1   Lithology analysis results of coal rock gas reservoirs

    岩性 密度/(g·cm−3 平均内摩擦角/(°) 平均抗压强度/MPa 特性
    灰岩 2.40~2.75 43.2 165.0 质地硬脆
    煤岩 1.35~1.45 26.0 9.8 质轻,质地软
    煤矸 2.55~2.65 42.0 178.0 密度大,质地硬,强度高,易坍塌掉块
    碳质泥岩 1.90~2.00 36.0 170.0 密度大、质地硬,易坍塌掉块
    下载: 导出CSV

    表  2   2023年盆地东部气田深层煤岩气完成井与邻井指标对比

    Table  2   Comparison of indexes between deep coal rock gas completion well and adjacent well in eastern gas field of basin in 2023

    年份完井口数平均井深/m钻井周期/d平均水平段
    段长/m
    水平段平均钻井
    周期/d
    水平段平均机械
    钻速/m·h−1
    储层段平均
    段长/m
    储层钻遇率,%
    202310423177.29134411.679.00119288.68
    20221426279.23150017.176.0677651.73
    下载: 导出CSV
  • [1] 王维,韩金良,王玉斌,等. 大宁−吉县区块深层煤岩气水平井钻井技术[J]. 石油机械,2023,51(11):70–78.

    WANG Wei, HAN Jinliang, WANG Yubin, et al. Drilling technology for deep coal rock gas horizontal wells in Da’ning-Jixian block[J]. China Petroleum Machinery, 2023, 51(11): 70–78.

    [2] 张金平,倪华锋,史配铭. 鄂尔多斯盆地东部气田盐下高含硫储层安全高效钻井技术[J]. 石油钻探技术,2023,51(3):22–29. doi: 10.11911/syztjs.2023073

    ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and efficient drilling in presalt high-sulfur reservoirs in the eastern gas fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22–29. doi: 10.11911/syztjs.2023073

    [3] 史配铭,李晓明,倪华峰,等. 苏里格气田水平井井身结构优化及钻井配套技术[J]. 石油钻探技术,2021,49(6):29–36. doi: 10.11911/syztjs.2021057

    SHI Peiming, LI Xiaoming, NI Huafeng, et al. Casing program optimization and drilling matching technologies for horizontal wells in Sulige Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(6): 29–36. doi: 10.11911/syztjs.2021057

    [4] 史配铭,倪华峰,石崇东,等. 苏里格致密气藏超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2022,50(1):13–21. doi: 10.11911/syztjs.2021056

    SHI Peiming, NI Huafeng, SHI Chongdong, et al. Key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13–21. doi: 10.11911/syztjs.2021056

    [5] 李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002

    LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002

    [6] 王春生,冯少波,张志,等. 深地塔科 1 井钻井设计关键技术[J]. 石油钻探技术,2024,52(2):78–86.

    WANG Chunsheng, FENG Shaobo, ZHANG Zhi, et al. Key technologies for drilling design of Well Shendi Take-1[J]. Petroleum Drilling Techniques, 2024, 52(2): 78–86.

    [7] 李磊,杨进,刘宝生,等. 渤海渤中区域深井井身结构优化[J]. 石油钻采工艺,2020,42(5):569–572.

    LI Lei, YANG Jin, LIU Baosheng, et al. Casing program optimization of deep wells in the central Bohai Area[J]. Oil Drilling & Production Technology, 2020, 42(5): 569–572.

    [8] 倪华峰. 陕224区块储气库水平井钻完井关键技术优化[J]. 石油钻采工艺,2023,45(1):31–37.

    NI Huafeng. Optimization on key technologies for drilling and completion of horizontal wells in gas storage in Shan 224 Block[J]. Oil Drilling & Production Technology, 2023, 45(1): 31–37.

    [9] 王虎,迟焕鹏,王胜建,等. 黔西地区石炭系页岩气钻井工程难点与对策[J]. 断块油气田,2024,31(5):909–915.

    WANG Hu, CHI Huanpeng, WANG Shengjian, et al. Difficulties and countermeasures of Carboniferous shale gas drilling engineering in western Guizhou[J]. Fault-Block Oil & Gas Field, 2024, 31(5): 909–915.

    [10] 刘宝生,徐鲲,李文龙,等. 渤海秦皇岛27-3区块探井快速钻井关键技术[J]. 中国海上油气,2024,36(4):153–160.

    LIU Baosheng, XU Kun, LI Wenlong, et al. Key technologies for rapid drilling of exploration well in QHD27-3 block in Bohai Sea[J]. China Offshore Oil and Gas, 2024, 36(4): 153–160.

    [11] 刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.

    LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei Oil-Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.

    [12] 孙家祥,赵洪山,马莉. 准噶尔盆地征 10 井超深井钻井关键技术[J]. 石油机械,2023,51(5):17–24.

    SUN Jiaxiang, ZHAO Hongshan, MA Li. Key drilling technologies for ultra-deep well zheng 10 in Junggar Basin[J]. China Petroleum Machinery, 2023, 51(5): 17–24.

    [13] 高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20–34. doi: 10.11911/syztjs.2023022

    GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4): 20–34. doi: 10.11911/syztjs.2023022

    [14] 荣准,邓旭,张琦,等. 川东北高磨砂岩地层高效PDC钻头个性化设计:以五宝场沙溪庙地层为例[J]. 钻采工艺,2022,45(4):32–37.

    RONG Zhun, DENG Xu, ZHANG Qi, et al. Personalized design of efficient PDC bit for highly abrasive sandstone formation in northeast Sichuan Basin: a case study of Shaximiao Formation in Wubaochang Block[J]. Drilling & Production Technology, 2022, 45(4): 32–37.

    [15] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺,2019,41(2):130–136.

    LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136.

    [16] 高航献,李真祥,胡彦峰. 元深1井超深井钻井提速关键技术[J]. 石油钻探技术,2024,52(3):28–33. doi: 10.11911/syztjs.2024054

    GAO Hangxian, LI Zhenxiang, HU Yanfeng. Key drilling technologies for increasing ROP in ultra-deep Well Yuanshen 1[J]. Petroleum Drilling Techniques, 2024, 52(3): 28–33. doi: 10.11911/syztjs.2024054

    [17] 李基伟,李乾,田胜雷,等. 东海深部高研磨地层冲击钻井PDC齿优选研究[J]. 石油机械,2024,52(8):77–84.

    Li Jiwei, Li Qian, Tian Shenglei, et al. Optimization of PDC cutter for percussive drilling in deep highly-abrasive strata in the East China Sea Basin[J]. China Petroleum Machinery, 2024, 52(8): 77–84.

    [18] 盖京明,李玮,刘刚军,等. 定向双齿结构对PDC钻头破岩效率及侧向力的影响[J]. 特种油气藏,2023,30(5):158–165.

    GAI Jingming, LI Wei, LIU Cangjun, et al. Eflect of directional double-tooth structure on rock-breaking effciency and lateral force of PDC drill bit[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 158–165.

    [19] 臧艳彬. 川东南地区深层页岩气钻井关键技术[J]. 石油钻探技术,2018,46(3):7–12. doi: 10.11911/syztjs.2018073

    ZANG Yanbin. Key drilling technology for deep shale gas reservoirs in the Southeastern Sichuan Region[J]. Petroleum Drilling Techniques, 2018, 46(3): 7–12. doi: 10.11911/syztjs.2018073

    [20] 王建龙,冯冠雄,刘学松,等. 长宁页岩气超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2020,48(5):9–14. doi: 10.11911/syztjs.2020086

    WANG Jianlong, FENG Guanxiong, LIU Xuesong, et al. Key technology for drilling and completion of shale gas horizontal wells with ultra-long horizontal sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9–14. doi: 10.11911/syztjs.2020086

    [21] 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术[J]. 石油钻探技术,2021,49(2):9–13. doi: 10.11911/syztjs.2020123

    CUI Yueming, SHI Haimin, ZHANG Qing. Optimized drilling and completion technology for horizontal wells in tight oil reservoirs in the Jilin Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 9–13. doi: 10.11911/syztjs.2020123

    [22] 朱海燕,龚丁,张兵. 致密砂岩气储层多尺度“地质—工程”双甜点评价新方法[J]. 天然气工业,2023,43(6):76–86.

    ZHU Haiyan, GONG Ding, ZHANG Bing. A multi-scale geology-engineering sweet spot evaluation method for tight sandstone gas reservoirs[J]. Natural Gas Industry, 2023, 43(6): 76-86, 2023, 43(6): 76–86.

    [23] 马英文,杨进,李文龙,等. 渤中26-6油田发现井钻井设计与施工[J]. 石油钻探技术,2023,51(3):9–15. doi: 10.11911/syztjs.2023075

    MA Yingwen, YANG Jin, LI Wenlong, et al. Drilling design and construction of a discovery well in Bozhong 26-6 Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 9–15. doi: 10.11911/syztjs.2023075

    [24] 李玉枝,刘纯仁. 川西中层水平井轨迹优化控制技术[J]. 复杂油气藏,2023,16(4):472–478.

    LI Yuzhi, LIU Chunren. Trajectory optimization control technology of middle horizontal well in Western Sichuan[J]. Complex Hydrocarbon Reservoirs, 2023, 16(4): 472–478.

    [25] 袁建强. 中国石化页岩气超长水平段水平井钻井技术新进展与发展建议[J]. 石油钻探技术,2023,51(4):81–87. doi: 10.11911/syztjs.2023030

    YUAN Jianqiang. New progress and development proposals of Sinopec’s drilling technologies for ultra-long horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81–87. doi: 10.11911/syztjs.2023030

    [26] 王春伟,杜焕福,董佑桓,等. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索[J]. 断块油气田,2024,31(3):424–431.

    WANG Chunwei, DU Huanfu, DONG Youhuan, et al. Exploration of “directing , logging , mud-logging , steering” integration model while drilling for shale oil horizontal wells in Biyang Depression[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 424–431.

    [27] 邓钧耀,刘奕杉,乔磊,等. 保德煤层气田黄河压覆区长水平段水平井钻井完井技术[J]. 石油钻探技术,2021,49(2):37–41. doi: 10.11911/syztjs.2020124

    DENG Junyao, LIU Yisha, QIAO Lei, et al. Drilling and completion technology of horizontal wells with long horizontal section in the Yellow River overlay area of the Baode coalbed methane field[J]. Petroleum Drilling Techniques, 2021, 49(2): 37–41. doi: 10.11911/syztjs.2020124

    [28] 王在明,陈金霞,沈园园,等. JN1H井煤岩气长水平段钻井井壁稳定技术[J]. 钻井液与完井液,2023,40(3):356–362. doi: 10.12358/j.issn.1001-5620.2023.03.011

    WANG Zaiming, CHEN Jinxia, SHEN Yuanyuan, et al. Borehole wall stabilization technology for drilling the long horizontal section coal rock gas Well JN1H[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 356–362. doi: 10.12358/j.issn.1001-5620.2023.03.011

    [29] 李红伟,张斌. 织金区块浅层煤层气J形大位移水平井钻井技术[J]. 石油钻探技术,2016,44(2):46–50. doi: 10.11911/syztjs.201602008

    LI Hongwei, ZHANG Bin. Drilling techniques in J-shaped extended reach horizontal wells in shallow coal bed methane reservoirs in the Zhijin Block[J]. Petroleum Drilling Techniques, 2016, 44(2): 46–50. doi: 10.11911/syztjs.201602008

  • 期刊类型引用(5)

    1. 秦才会,李国玉,季新标,江帆,郭宇. 基于有限元数值方法的钻杆天线磁芯槽优化研究. 模具技术. 2023(05): 6-19 . 百度学术
    2. 许天旱,丁一明,林宏,蔡炎桥,雷志胜. 超高强度钻杆钢的温度敏感系数. 材料热处理学报. 2020(10): 95-102 . 百度学术
    3. 舒志强,欧阳志英,袁鹏斌. 拉扭复合载荷条件下V150钻杆的力学性能研究. 石油钻探技术. 2019(02): 68-73 . 本站查看
    4. 丁一明,许天旱,林宏. 温度对U165超高强度钻杆钢冲击韧性的影响. 钢铁研究学报. 2019(12): 1086-1091 . 百度学术
    5. 龚维,覃亚群,罗容,尹晓刚,付海,班大明. 改性石膏晶须对HDPE复合材料力学性能的影响. 贵州师范大学学报(自然科学版). 2018(05): 36-41 . 百度学术

    其他类型引用(2)

图(1)  /  表(2)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  89
  • PDF下载量:  87
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-08-09
  • 修回日期:  2024-11-17
  • 网络出版日期:  2024-12-03
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回