Prediction and Optimization of ROP Assisted by Adjacent Well Data Based on Geological and Engineering Driving
-
摘要:
渤海中部沙河街组储层主要为泥岩和深色砂泥岩,在钻遇该储层时机械钻速偏低,严重影响钻井周期与钻井成本。为解决上述问题,建立了基于地质−工程一体化的钻速预测与优化模型。该模型包括钻速预测与钻速优化2部分,基于地质与工程融合数据建立了邻井辅助同井钻速预测模型;在完成钻速预测后,定义了特征贡献度系数,以量化不同特征参数对最终结果的影响程度,既可以基于特征贡献度系数对预测结果进行解释,也可以得到对钻速影响较大且可人为可控的参数。针对显著影响钻速且可人为可控的参数,钻速优化模型通过网格搜索优化算法寻找最优参数组合,从而实现钻井提速。基于该模型对钻速优化可知,测试井的钻速平均提高了6.34%,对预测结果贡献最大的3组参数分别是伽马值、钻压和钻头钻井时长。该模型综合考虑了地质与工程因素,实现了高精度钻速预测与钻速大幅度提高,在实际应用的2口开发井中为钻速提高提供了有效的指导。
Abstract:The main lithology of the Shahejie Formation reservoir in the central Bohai Sea is mudstone and dark sandy mudstone, and the rate of penetration (ROP) is generally low when drilling through this reservoir, significantly influencing the drilling cycle and costs. To address this issue, a ROP prediction and optimization model integrating geology and engineering was proposed. This model consisted of two parts: ROP prediction and ROP optimization. The ROP prediction leveraged geological and engineering data to establish an ROP prediction model of the drilled well assisted by adjacent well data. After completing the ROP prediction, a feature contribution coefficient was defined to quantify the influence of different feature parameters on the final result. This feature contribution coefficient allowed for both an interpretation of the predicted results and the identification of controllable parameters that significantly affect ROP. For these controllable parameters, the ROP optimization model used a grid search optimization algorithm to explore the optimal parameter combination, thereby improving ROP. The ROP optimization results based on this model show that the ROP of the test well increases by 6.34% on average, with the three parameters contributing most to the prediction results being gamma values, weight on bit, and bit drilling time. This model effectively integrates geological and engineering parameters, achieving high-accuracy ROP predictions and substantial ROP improvements and providing valuable guidance for ROP enhancement in two development wells where it has been applied.
-
-
表 1 GBDT模型与LSTM模型的主要超参数
Table 1 Main hyper-parameters of GBDT and LSTM
模型 优化方法 主要超参数 GBDT TPE 学习率:0.01;损失函数:均方差损失;
弱学习器迭代次数:900;最大深度:55LSTM PSO 学习率:0.01;隐藏层个数:2;
隐藏层神经元个数:128和64;迭代次数:1 800表 2 各评价指标随M取值的变化情况
Table 2 Variation of different evaluation indexes with M
M取值 EMAP,% PROPT 算法运行时长/ms 40 44.28 0.42 878 60 30.02 0.53 1 097 80 19.15 0.81 1 302 100 11.28 0.88 1 389 120 9.37 0.92 1 394 140 9.30 0.93 1 402 表 3 待优化参数的取值范围
Table 3 Range of optimization parameters
优化参数 钻压/kN 转速/(r·min−1) 允许最小值 0 0 允许最大值 882.6 165.0 采样间隔 9.8 1.0 表 4 开发井I和开发井II的基本参数
Table 4 Basic information of development well I and development well II
井名 沙河街组
测深/m沙河街组
垂深/m机械钻速/(m·h−1) 最小 最大 平均 开发井I 4 949~5 566 4 276~4 763 0.17 14.32 5.77 开发井II 5 046~5 560 4 374~4 733 2.09 15.31 7.05 -
[1] REN Jun, JIANG Jie, ZHOU Changchun, et al. Research on adaptive feature optimization and drilling rate prediction based on real-time data[J]. Geoenergy Science and Engineering, 2024, 242: 213247. doi: 10.1016/j.geoen.2024.213247
[2] SONG Zehua, SONG Yu, YANG Jin, et al. A multi-objective reinforcement learning framework for real-time drilling optimization based on symbolic regression and perception[J]. Geoenergy Science and Engineering, 2025, 244: 213392. doi: 10.1016/j.geoen.2024.213392
[3] HEGDE C, MILLWATER H, PYRCZ M, et al. Rate of penetration (ROP) optimization in drilling with vibration control[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 71–81.
[4] ZHANG Heng, NI Hongjian, WANG Zizhen, et al. Optimization and application study on targeted formation ROP enhancement with impact drilling modes based on clustering characteristics of logging[J]. Energy Reports, 2020, 6: 2903–2912. doi: 10.1016/j.egyr.2020.10.020
[5] 甘超. 复杂地层可钻性场智能建模与钻速优化[D]. 武汉:中国地质大学(武汉),2019:1−49. GAN Chao. Intelligent modeling of formation drillability field and drilling rate of penetration optimization in complex conditions[D]. Wuhan: China University of Geosciences(Wuhan), 2019: 1−49.
[6] WARREN T M. Penetration-rate performance of roller-cone bits[J]. SPE Drilling Engineering, 1987, 2(1): 9–18. doi: 10.2118/13259-PA
[7] BOURGOYNE A T, Jr, YOUNG F S, Jr. A multiple regression approach to optimal drilling and abnormal pressure detection[J]. SPE Journal, 1974, 14(4): 371–384.
[8] ALALI A M, ABUGHABAN M F, AMAN B M, et al. Hybrid data driven drilling and rate of penetration optimization[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108075. doi: 10.1016/j.petrol.2020.108075
[9] 刘军波,韦红术,赵景芳,等. 考虑钻头转速影响的新三维钻速方程[J]. 石油钻探技术,2015,43(1):52–57. LIU Junbo, WEI Hongshu, ZHAO Jingfang, et al. A new 3D ROP equation considering the rotary speed of bit[J]. Petroleum Drilling Techniques, 2015, 43(1): 52–57.
[10] BRENJKAR E, DELIJANI E B. Computational prediction of the drilling rate of penetration (ROP): A comparison of various machine learning approaches and traditional models[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110033.
[11] MAURER W C. The “perfect-cleaning” theory of rotary drilling[J]. Journal of Petroleum Technology, 1962, 14(11): 1270–1274. doi: 10.2118/408-PA
[12] BINGHAM M G. A new approach to interpreting-rock drillability[M]. Tulsa: Petroleum Publishing Company, 1965: 36−49.
[13] CHEN Xuyue, WENG Chengkai, DU Xu, et al. Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques[J]. Ocean Engineering, 2023, 285(part 2): 115404.
[14] ABDULMALEK A S, SALAHELDIN E, ABDULAZEEZ A, et al. Prediction of rate of penetration of deep and tight formation using support vector machine[R]. SPE 192316, 2018.
[15] 刘胜娃,孙俊明,高翔,等. 基于人工神经网络的钻井机械钻速预测模型的分析与建立[J]. 计算机科学,2019,46(增刊1):605–608. LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(supplement 1): 605–608.
[16] GAN Chao, WANG Xiang, WANG Luzhao, et al. Multi-source information fusion-based dynamic model for online prediction of rate of penetration (ROP) in drilling process[J]. Geoenergy Science and Engineering, 2023, 230: 212187. doi: 10.1016/j.geoen.2023.212187
[17] OYEDERE M, GRAY K. ROP and TOB optimization using machine learning classification algorithms[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103230. doi: 10.1016/j.jngse.2020.103230
[18] 黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448. HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
[19] 赵颖,孙挺,杨进,等. 基于极限学习机的海上钻井机械钻速监测及实时优化[J]. 中国海上油气,2019,31(6):138–142. ZHAO Ying, SUN Ting, YANG Jin, et al. Extreme learning machine-based offshore drilling ROP monitoring and real-time optimization[J]. China Offshore Oil and Gas, 2019, 31(6): 138–142.
[20] 李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47. doi: 10.11911/syztjs.2023040 LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47. doi: 10.11911/syztjs.2023040
-
期刊类型引用(8)
1. 张贵才,王磊,胡俊杰,王翔,蒋平,裴海华. 乳化沥青提高原油采收率研究进展. 油田化学. 2024(01): 160-166 . 百度学术
2. 孙欢,朱明明,李润苗,赵福荣,杨治强,刘小杰. 长庆油田二氧化碳注采区防漏堵漏技术研究与应用. 石油化工应用. 2023(11): 24-27+35 . 百度学术
3. 王志兴,赵凤兰,冯海如,宋黎光,李妍,郝宏达. 边水断块油藏水平井组CO_2协同吞吐注入量优化实验研究. 油气地质与采收率. 2020(01): 75-80 . 百度学术
4. 赵燕,陈向军. 底水油藏水锥回落高度预测模型. 断块油气田. 2018(03): 367-370 . 百度学术
5. 王志兴,赵凤兰,侯吉瑞,郝宏达. 断块油藏水平井组CO_2协同吞吐效果评价及注气部位优化实验研究. 石油科学通报. 2018(02): 183-194 . 百度学术
6. 姚振杰,黄春霞,马永晶,王伟,汤瑞佳. 延长油田CO_2驱储层物性变化规律. 断块油气田. 2017(01): 60-62 . 百度学术
7. 闫海俊,谢刚,巨登峰,秦忠海,刘萌. 冀中地区高含水水平井治理工艺模式. 断块油气田. 2016(05): 648-651+654 . 百度学术
8. 薄其众,戴涛,杨勇,鞠斌山. 胜利油田樊142块特低渗透油藏CO_2驱油储层压力动态变化研究. 石油钻探技术. 2016(06): 93-98 . 本站查看
其他类型引用(2)