深井大尺寸环空气液两相流动规律数值模拟研究

张绪亮, 张驰, 周波, 阳君奇, 卢运虎, 尹邦堂

张绪亮,张驰,周波,等. 深井大尺寸环空气液两相流动规律数值模拟研究[J]. 石油钻探技术,2024,52(6):37−49. DOI: 10.11911/syztjs.2024109
引用本文: 张绪亮,张驰,周波,等. 深井大尺寸环空气液两相流动规律数值模拟研究[J]. 石油钻探技术,2024,52(6):37−49. DOI: 10.11911/syztjs.2024109
ZHANG Xuliang, ZHANG Chi, ZHOU Bo, et al. Numerical simulation of gas-liquid two-phase flow pattern in large annulus of deep well [J]. Petroleum Drilling Techniques, 2024, 52(6):37−49. DOI: 10.11911/syztjs.2024109
Citation: ZHANG Xuliang, ZHANG Chi, ZHOU Bo, et al. Numerical simulation of gas-liquid two-phase flow pattern in large annulus of deep well [J]. Petroleum Drilling Techniques, 2024, 52(6):37−49. DOI: 10.11911/syztjs.2024109

深井大尺寸环空气液两相流动规律数值模拟研究

基金项目: 国家自然科学基金基础科学中心项目“超深特深层油气钻采流动调控”(编号:52288101)和国家自然科学基金面上项目“水平井压回法压井气液逆向非稳态多相流动机理及参数设计方法”(编号:52274020)联合资助。
详细信息
    作者简介:

    张绪亮(1989—),男,黑龙江依安人,2012年毕业于东北石油大学石油工程专业,中国石油大学(北京)在读博士研究生,高级工程师,主要从事井控技术及应用方面的研究。E-mail:821070764@qq.com

    通讯作者:

    尹邦堂,yinbangtang@163.com

  • 中图分类号: TE21

Numerical Simulation of Gas-Liquid Two-Phase Flow Pattern in Large Annulus of Deep Well

  • 摘要:

    深层和超深层油气井井身结构复杂且部分井眼尺寸较大,钻进过程中容易遇到异常压力,导致安全作业窗口变窄。当发生气侵时,井筒环空内会形成气液两相流,传统的基于常规尺寸流型转化理论的压井方法容易超出窄窗口,导致涌漏交替,从而错过最佳压井时机。为解决这一问题,基于VOF模型开发了一种适用于大尺寸环空气液两相流动的数值模拟方法,并采用文献数据验证了其准确性。在水力当量直径196.8 mm环空内进行的气液两相流动模拟中,识别出泡状流、弹帽流、段塞流和搅拌流等4种流型,分析了其特征,并据此绘制了气液两相流流型图,建立了流型转化判据,揭示了环空尺寸对流型转化的影响规律。研究结果表明,与常规尺寸环空相比,大尺寸环空中泡状流的范围扩大,且在泡状流与段塞流之间存在过渡流型——弹帽流,各流型转化边界均有不同程度的右移。由于常规尺寸环空更容易发生气泡聚并形成泰勒泡,压井操作困难,因此,根据常规尺寸环空流型转化判据为大尺寸环空设计的压井参数往往偏大。相比之下,基于新判据设计的压井参数能够更好地适应窄窗口和大尺寸井眼的压井需求,提高了压井的效率和安全性。

    Abstract:

    In deep and ultra-deep oil and gas wells, abnormal pressure is often encountered while drilling due to their complex casing program and larger borehole sizes, which results in a narrowed safe operating window. When gas intrusion occurs, a gas-liquid two-phase flow forms in the annulus of the wellbore. Conventional well killing methods based on flow pattern transition theories of conventional annulus sizes are prone to exceeding this narrow window, leading to alternating influx and loss and therefore the optimal well killing timing is missed. To address this issue, a numerical simulation method for gas-liquid two-phase flow in large-size annulus was developed using the volume of fluid (VOF) model and was verified with literature data for accuracy. In the simulation of gas-liquid two-phase flow in an annulus with a hydraulic equivalent diameter of 196.8 mm, four flow patterns including bubble flow, cap bubble flow, slug flow, and churn flow were identified and analyzed. A gas-liquid flow pattern map was created, and criteria for flow pattern transitions were established, revealing the influence of annulus size on flow pattern transitions. The results indicate that compared with conventional annulus size, the range of bubble flow expands in larger annuli, with a transitional flow pattern, namely cap bubble flow occurring between bubble and slug flows. The boundaries for flow pattern transitions shift to the right to some certain degree. In conventional annulus size, bubble coalescence and the formation of Taylor bubbles are common, making well killing operations more challenging. Consequently, well control parameters designed for large annuli tend to be bigger. On the contrary, the well control parameters designed based on the new criteria meet the requirements of well killing better in narrow windows and large borehole sizes, thereby improving the efficiency and safety of well killing operations.

  • 图  1   大尺寸环空的物理模型

    Figure  1.   Large annulus computational model

    图  2   大尺寸环空的网格模型

    Figure  2.   Large annulus grid model

    图  3   网格无关性验证结果

    Figure  3.   Results of grid independence verification

    图  4   环空内气体分布模拟结果

    Figure  4.   Simulated gas distribution map in annulus

    图  5   模拟含气率与试验测得含气率的对比

    Figure  5.   Comparison between gas void fraction from simulation and experimental data

    图  6   环空内泡状流含气率等值面

    Figure  6.   Equivalent surface contour plot of gas void fraction of bubble flow in annulus

    图  7   环空内泡状流径向截面气液两相分布云图

    Figure  7.   Gas-liquid two-phase distribution contour plot ofradial cross-section of bubble flow in annulus

    图  8   环空内泡状流径向截面含气率随时间波动的曲线

    Figure  8.   Variation of gas void fraction in the radial cross-section of bubble flow in annulus with time

    图  9   环空内弹帽流含气率等值面

    Figure  9.   Equivalent surface contour plot of gas void fraction of cap-bubble flow in annulus

    图  10   环空内弹帽流径向截面气液两相分布云图

    Figure  10.   Gas-liquid two-phase distribution contour plot of radial cross-section of cap-bubble flow in annulus

    图  11   环空内弹帽流径向截面含气率随时间波动的曲线

    Figure  11.   Variation of gas void fraction in the radial cross-section of cap-bubble flow in annulus with time

    图  12   环空内段塞流含气率等值面

    Figure  12.   Equivalent surface contour plot of gas void fraction of slug flow in annulus

    图  13   环空内段塞流径向截面气液两相分布云图

    Figure  13.   Gas-liquid two-phase distribution contour plot of radial cross-section of slug flow in annulus

    图  14   环空内段塞流径向截面含气率随时间波动的曲线

    Figure  14.   Variation of gas void fraction in the radial cross-section of slug flow in annulus with time

    图  15   环空内搅拌流含气率等值面

    Figure  15.   Equivalent surface contour plot of gas void fraction of churn flow in annulus

    图  16   环空内搅拌流轴向截面气液两相分布云图

    Figure  16.   Gas-liquid two-phase distribution contour plot of radial cross-section of churn flow in annulus

    图  17   环空内搅拌流径向截面55004500 mm处气液两相分布对比

    Figure  17.   Comparison of two-phase distribution of churn flow at 5500 mm and 4500 mm in the radial cross-section of the annulus

    图  18   环空内搅拌流径向截面含气率随时间波动的曲线

    Figure  18.   Variation of gas void fraction in the radial cross-section of churn flow in annulus with time

    图  19   水力当量直径196.8 mm环空气液两相流流型图

    Figure  19.   Gas-liquid two-phase flow pattern in annulus with equivalent hydraulic diameter of 196.8 mm

    图  20   水力当量直径196.8 mm下环空气液两相流流型转化的判据

    Figure  20.   Transition criteria of gas-liquid two-phase flow patterns in annulus with equivalent hydraulic diameterof 196.8 mm

    图  21   气相表观速度分别为0.08和0.15 m/s时环空中含气率等值面

    Figure  21.   Equivalent surface contour plot of gas void fraction with apparent gas-phase velocities of 0.08 m/s and 0.15 m/s in annulus

    图  22   气相表观速度分别为0.15和0.85 m/s时环空中含气率等值面

    Figure  22.   Equivalent surface contour plot of gas void fraction with apparent gas-phase velocities of 0.15 m/s and 0.85 m/s in annulus

    图  23   气相表观速度分别为0.85和2.10 m/s时环空中含气率等值面

    Figure  23.   Equivalent surface contour plot of gas void fraction with apparent gas-phase velocities of 0.85 m/s and 2.10 m/s

    图  24   液相表观流速为0.02,0.10和0.50 m/s时环空含气率等值面

    Figure  24.   Equivalent surface contour plot of gas void fraction with apparent liquid-phase velocities of 0.02 m/s, 0.10 m/s, and 0.50 m/s in annulus

    图  25   不同尺寸环空中的气液分布情况对比

    Figure  25.   Comparison of gas-liquid distribution in different sizes of annuli

    图  26   不同密度压井液压井期间环空内含气率的分布

    Figure  26.   Gas void fraction distribution in annulus during well killing with with killing fluid of different densities

    表  1   数值模型流体的物性参数

    Table  1   Physical properties parameters of fluid for numerical simulation

    流体密度/(kg·m−3黏度/(mPa·s)表面张力/(N·m−1
    998.21.0030.072
    空气1.2251.798×10−2
    下载: 导出CSV

    表  2   不同工况下的数值模拟结果与试验结果

    Table  2   Comparison between numerical simulation results and experimental data under different workingconditions

    工况 气相表观
    速度/(m·s−1
    液相表观
    速度/(m·s−1
    数值模拟流型 试验流型
    a 0.125 0.025 泡状流 泡状流
    b 0.150 0.030 泡状流 泡状流
    c 0.150 0.100 弹帽流 弹帽流
    d 1.000 0.030 搅拌流 搅拌流
    下载: 导出CSV

    表  3   液相表观流速为0.05 m/s时,不同气相表观流速下流型模拟结果

    Table  3   Flow pattern simulation results under different apparent gas-phase flow velocities when apparent liquid-phase flow velocity is 0.05 m/s

    液相表观速度/(m·s−1 气相表观速度/(m·s−1 数值模拟流型
    0.05 0.08 泡状流
    0.15 弹帽流
    0.85 段塞流
    2.10 搅拌流
    下载: 导出CSV

    表  4   气相表观流速为0.15 m/s时,不同液相表观流速下流型模拟结果

    Table  4   Flow pattern simulation results under different apparent liquid-phase flow velocities when apparent gas-phase flow velocity is 0.15 m/s

    气相表观速度/(m·s−1 液相表观速度/(m·s−1 数值模拟流型
    0.15 0.50 泡状流
    0.10 弹帽流
    0.02 段塞流
    下载: 导出CSV
  • [1]

    SADATOMI M, SATO Y, SARUWATARI S. Two-phase flow in vertical noncircular channels[J]. International Journal of Multiphase Flow, 1982, 8(6): 641–655. doi: 10.1016/0301-9322(82)90068-4

    [2]

    KELESSIDIS V C, DUKLER A E. Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli[J]. International Journal of Multiphase Flow, 1989, 15(2): 173–191.

    [3] 陈家琅,石在虹,许剑锋. 垂直环空中气液两相向上流动的流型分布[J]. 大庆石油学院学报,1994,18(4):23–26.

    CHEN Jialang, SHI Zaihong, XU Jianfeng. Flow patterns of gas-liquid two-phase upward flow in vertical annuli[J]. Journal of Daqing Petroleum Institute, 1994, 18(4): 23–26.

    [4] 林英松,陈庭根,李相方. 垂直环空气液两相流流型的实验研究[J]. 石油大学学报(自然科学版),1996,20(3):29–31.

    LIN Yingsong, CHEN Tinggen, LI Xiangfang. Experimental study of gas-liquid two-phase flow in vertical annular space[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1996, 20(3): 29–31.

    [5] 张军,陈听宽,金友煌. 环空管内气液两相流流型研究进展[J]. 油气井测试,1999,8(4):63–68.

    ZHANG Jun, CHEN Tingkuan, JIN Youhuang. The progress of studies on flow pattern of gas-liquid two phase flow in the annulus[J]. Well Testing, 1999, 8(4): 63–68.

    [6]

    ISSA R I. Prediction of turbulent, stratified, two-phase flow in inclined pipes and channels[J]. International Journal of Multiphase Flow, 1988, 14(2): 141–154. doi: 10.1016/0301-9322(88)90002-X

    [7]

    NEWTON C H, BEHNIA M. Numerical calculation of turbulent stratified gas–liquid pipe flows[J]. International Journal of Multiphase Flow, 2000, 26(2): 327–337. doi: 10.1016/S0301-9322(99)00010-5

    [8] 赵铎. 水平管内气液两相流流型数值模拟与实验研究[D]. 青岛:中国石油大学(华东),2007.

    ZHAO Duo. Numerical simulation and experiment research on flow pattern of gas-liquid flow in horizontal pipe[D]. Qingdao: China University of Petroleum(East China), 2007.

    [9] 彭壮,廖锐全,汪国琴,等. 高气液流速下垂直管两相流实验及数值模拟研究[J]. 油气田地面工程,2016,35(3):41–44. doi: 10.3969/j.issn.1006-6896.2016.3.013

    PENG Zhuang, LIAO Ruiquan, WANG Guoqin, et al. Experimental and numerical simulation study on two phase flow in vertical pipe at high gas-liquid flow rates[J]. Oil-Gas Field Surface Engineering, 2016, 35(3): 41–44. doi: 10.3969/j.issn.1006-6896.2016.3.013

    [10] 王海燕,王春升,李玉星,等. 气液两相流流型的判别方法[J]. 油气储运,2019,38(7):772–777.

    WANG Haiyan, WANG Chunsheng, LI Yuxing, et al. Flow-pattern-prediction models used for gas-liquid two-phase flow[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 772–777.

    [11] 张馨玉. 介质、管径及倾角对管内气液两相流型影响的数值模拟[D]. 长春:东北电力大学,2019.

    ZHANG Xinyu. Numerical simulation on effect of medium, diameter and angle on gas-liquid two-phase flow pattern in tubes[D]. Changchun: Northeast Electric Power University, 2019.

    [12] 邱小雪,戴家才,陈猛,等. 基于VOF对低产积液气井流动特征的数值模拟[J]. 断块油气田,2020,27(5):619–623.

    QIU Xiaoxue, DAI Jiacai, CHEN Meng, et al. Numerical simulation of the flow characteristics in low-yield and liquid loading gas well based on VOF[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 619–623.

    [13] 俞强强,施红辉,董若凌,等. 竖直上升圆管内气液两相流流型特性的数值模拟[J]. 浙江理工大学学报(自然科学版),2022,47(3):397–404.

    YU Qiangqiang, SHI Honghui, DONG Ruoling, et al. Numerical simulation of flow pattern characteristics of gas-liquid two-phase flow in vertical rising pipes[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences), 2022, 47(3): 397–404.

    [14] 张旭鑫. 垂直环空油基钻井液-气体两相流流型转化规律研究[D]. 青岛:中国石油大学(华东),2020.

    ZHANG Xuxin. Study on flow pattern transition of oil based drilling fluid-gas two-phase flow in vertical annulus[D]. Qingdao: China University of Petroleum(East China), 2020.

    [15]

    COLMANETTI A R A, de CASTRO M S, BARBOSA M C, et al. Phase inversion phenomena in vertical three-phase flow: Experimental study on the influence of fluids viscosity, duct geometry and gas flow rate[J]. Chemical Engineering Science, 2018, 189: 245–259.

    [16]

    COLMANETTI A R A, de CASTRO M S, BARBOSA M C, et al. Influence of liquid viscosity and geometry on vertical gas/liquid two-phase annular-duct flow[J]. SPE Journal, 2020, 25(6): 3236–3249. doi: 10.2118/200491-PA

    [17] 李昊. 超临界条件下井筒环空多相流动规律研究[D]. 青岛:中国石油大学(华东),2015.

    LI Hao. Study on multi-phase flow in supercritical wellbore annular[D]. Qingdao: China University of Petroleum(East China), 2015.

    [18]

    GRIFFITH P, SNYDER G A. The bubbly-slug transition in a high velocity two phase flow: technical report No. 5003-29[R]. Cambridge: M. I. T. Division of Sponsored Research, 1964.

    [19]

    RADOVCICH N A, MOISSIS R. The transition from two phase bubble flow to slug flow: report No. 7-7673-22[R]. Cambridge: M. I. T. Division of Sponsored Research, 1962.

    [20]

    HARMATHY T Z. Velocity of large drops and bubbles in media of infinite or restricted extent[J]. AIChE Journal, 1960, 6(2): 281–288. doi: 10.1002/aic.690060222

    [21]

    ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453–468. doi: 10.1115/1.3689137

    [22]

    TAITEL Y, BARNEA D, DUKLER A E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AIChE Journal, 1980, 26(3): 345–354. doi: 10.1002/aic.690260304

    [23]

    OZAWA M, AKAGAWA K, SAKAGUCHI T. Flow instabilities in parallel-channel flow systems of gas-liquid two-phase mixtures[J]. International Journal of Multiphase Flow, 1989, 15(4): 639–657.

    [24]

    DAS G, DAS P K, PUROHIT N K, et al. Flow pattern transition during gas liquid upflow through vertical concentric annuli: part II: mechanistic models[J]. Journal of Fluids Engineering, 1999, 121(4): 902–907. doi: 10.1115/1.2823553

    [25] 孙宝江,王雪瑞,孙小辉,等. 井筒四相流动理论在深水钻完井工程与测试领域的应用与展望[J]. 天然气工业,2020,40(12):95–105. doi: 10.3787/j.issn.1000-0976.2020.12.011

    SUN Baojiang, WANG Xuerui, SUN Xiaohui, et al. Application and prospect of the wellbore four-phase flow theory in the field of deepwater drilling and completion engineering and testing[J]. Natural Gas Industry, 2020, 40(12): 95–105. doi: 10.3787/j.issn.1000-0976.2020.12.011

    [26]

    SUN Baojiang, GONG Peibin, WANG Zhiyuan. Simulation of gas kick with high H2S content in deep well[J]. Journal of Hydrodynamics, 2013, 25(2): 264–273. doi: 10.1016/S1001-6058(13)60362-5

  • 期刊类型引用(8)

    1. 薛洋. 单筒三井钻井技术在文昌油田的应用. 钻探工程. 2023(01): 33-38 . 百度学术
    2. 刁斌斌,高德利,胡德高,刘尧文. 基于贡献率分析的井眼轨迹测量主要误差源辨识. 钻采工艺. 2021(01): 1-6 . 百度学术
    3. 刘永辉,李然,朱宽亮. 密集丛式井磁干扰情况下防碰判断与控制方法. 钻采工艺. 2021(01): 43-47 . 百度学术
    4. 杨玉豪,张万栋,王成龙,莫康荣,程利民,张雪菲. 南海高温高压气田密集丛式井表层?660.4 mm井段安全钻井技术. 天然气勘探与开发. 2021(02): 75-80 . 百度学术
    5. 焦明,霍宏博,窦蓬,刘海龙,陈卓. 海洋随钻近钻头测斜工具研发和应用. 石化技术. 2020(06): 142-143 . 百度学术
    6. 张强,杜小松,孔华,晁文学,李亚南. 川南页岩气平台井组浅层预增斜轨道优化技术. 西部探矿工程. 2018(01): 61-65 . 百度学术
    7. 刘刚,李祎宸,张家林,刘闯,杨帆,穆文军,王锴. 多传感器下基于遗传算法的钻头与套管间距离研究. 振动与冲击. 2018(12): 9-16 . 百度学术
    8. 赵少伟,徐东升,王菲菲,罗曼,李振坤,刘杰. 渤海油田丛式井网整体加密钻井防碰技术. 石油钻采工艺. 2018(S1): 112-114 . 百度学术

    其他类型引用(0)

图(26)  /  表(4)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  30
  • PDF下载量:  44
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-11-07
  • 网络出版日期:  2024-11-17
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回