聚醚类稠油降黏剂的合成及降黏机理研究

张培智

张培智. 聚醚类稠油降黏剂的合成及降黏机理研究[J]. 石油钻探技术,2025,53(1):102−107. DOI: 10.11911/syztjs.2024106
引用本文: 张培智. 聚醚类稠油降黏剂的合成及降黏机理研究[J]. 石油钻探技术,2025,53(1):102−107. DOI: 10.11911/syztjs.2024106
ZHANG Peizhi. Synthesis and viscosity reduction mechanism of polyether viscosity reducer for heavy oil [J]. Petroleum Drilling Techniques, 2025, 53(1):102−107. DOI: 10.11911/syztjs.2024106
Citation: ZHANG Peizhi. Synthesis and viscosity reduction mechanism of polyether viscosity reducer for heavy oil [J]. Petroleum Drilling Techniques, 2025, 53(1):102−107. DOI: 10.11911/syztjs.2024106

聚醚类稠油降黏剂的合成及降黏机理研究

详细信息
    作者简介:

    张培智(1976—),男,山西介休人,2001年毕业于中国地质大学(武汉)石油工程专业,2013年获中国石油大学(华东)石油工程专业工程硕士学位,主要从事油田开发及管理工作。E-mail:zpz761211@163.com

  • 中图分类号: TE39

Synthesis and Viscosity Reduction Mechanism of Polyether Viscosity Reducer for Heavy Oil

  • 摘要:

    为解决传统降黏剂在辅助稠油举升过程中因搅拌速度低无法与采出液充分混合,导致现场应用效果不佳的问题,以苯乙烯、马来酸酐、壬基酚聚氧乙烯醚为主要原料,合成了一种聚醚类稠油降黏剂MSN,通过室内试验测试了其降黏性能,并分析了降黏机理。试验结果表明,在搅拌速度50 r/min、搅拌1 min条件下,MSN对稠油的降黏率达到95.6%,24 h后降黏率仍保持在87.2%,表现出低搅拌速度下降黏能力和降黏稳定性较强的特点;观察MSN加入稠油前后胶质和沥青质形貌的扫描电镜结果发现,胶质和沥青质的聚集结构发生了明显的分散。分析认为,MSN通过分散作用,减弱了稠油中胶质和沥青质分子间的相互作用,使其不能形成结构稳定的胶体,从而实现稠油降黏的目的。研制的降黏剂MSN为稠油油藏高效开发提供了技术支撑。

    Abstract:

    The traditional viscosity reducer has low stirring strength in the process of auxiliary heavy oil lifting, and it fails to be fully mixed with the produced liquid, leading to a poor on-site application effect. To solve this problem, a polyether viscosity reducer for heavy oil (MSN) was synthesized with styrene, maleic anhydride, and nonylphenol polyoxyethylene ether as main raw materials, and its viscosity reduction performance was investigated by laboratory tests. The viscosity reduction mechanism was discussed. The results show that MSN can achieve a viscosity reduction rate of 95.6% under the condition of stirring at 50 r/min for 1 min and can still maintain a viscosity reduction rate of 87.2% after 24 h. It also shows strong viscosity reduction ability and viscosity reduction stability under low stirring intensity. Scanning electron microscope (SEM) is used to observe the morphology of colloid and asphaltene before and after the addition of MSN and results show that the addition of MSN significantly disperses the original agglomerated structure of colloid and asphaltene. The analysis finds that MSN reduces the interaction between colloid and asphaltene molecules in heavy oil through dispersion and prevents them from forming a colloidal stable structure, so as to achieve the purpose of viscosity reduction in heavy oil. The successful development of viscosity reducer MSN provides technical support for the efficient development of heavy oil.

  • 图  1   MSN的红外谱图

    Figure  1.   Infrared spectrum of MSN

    图  2   降黏剂MSN对稠油黏温特性的影响

    Figure  2.   Effect of MSN on viscosity temperature characteristics of heavy oil

    图  3   降黏剂MSN加入前后胶质形貌的变化

    Figure  3.   Changes in morphology of colloid before and after MSN addition

    图  4   降黏剂MSN加入前后沥青质形貌变化情况

    Figure  4.   Changes in morphology of asphaltene before and after MSN addition

    表  1   不同搅拌速度下4种降黏剂的降黏率试验结果

    Table  1   Test results of viscosity reduction rate of four kinds of viscosity reducers under different stirring intensities

    降黏剂 质量分数,% 降黏率,%
    50 100 150
    TW 0.8 77.85 87.66 91.14
    SWJ 0.8 76.45 87.25 92.16
    XJF 0.8 78.65 89.15 94.18
    MSN 0.8 95.60 97.32 98.38
     注:①为搅拌速度,r/min。
    下载: 导出CSV

    表  2   稠油加入4种降黏剂后不同时间下的黏度

    Table  2   Viscosity of heavy oil at different time after adding four kinds of viscosity reducers

    降黏剂 不同时间下稠油的表观黏度/(mPa·s)
    1 h 2 h 3 h 6 h 9 h 12 h 15 h 20 h 24 h
    TW 149 175 553 948 1 570 2 240 3 300 4 500 4 700
    SWJ 689 880 960 1 500 1 689 2 350 3 702 4 990 5 220
    XJF 567 580 720 879 1 161 1 209 1 930 2 009 2 100
    MSN 102 80 85 93 104 136 176 395 799
     注:①为加入降黏剂后的时间。
    下载: 导出CSV
  • [1] 崔青,张长桥,修建新,等. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版),2017,47(2):123–130.

    CUI Qing, ZHANG Changqiao, XIU Jianxin, et al. Molecular dynamic simulation on the mechanism of viscosity reduction to asphaltene and resin in heavy oil[J]. Journal of Shandong University(Engineering Science), 2017, 47(2): 123–130.

    [2]

    ZHOU Xiaodong, DONG Mingzhe, MAINI B. The dominant mechanism of enhanced heavy oil recovery by chemical flooding in a two-dimensional physical model[J]. Fuel, 2013, 108: 261–268. doi: 10.1016/j.fuel.2013.02.012

    [3] 展学成,马好文,王斌,等. 稠油黏度影响因素研究进展[J]. 石油化工,2019,48(2):222–226. doi: 10.3969/j.issn.1000-8144.2019.02.020

    ZHAN Xuecheng, MA Haowen, WANG Bin, et al. Review of influencing factors of viscosity of heavy oil[J]. Petrochemical Technology, 2019, 48(2): 222–226. doi: 10.3969/j.issn.1000-8144.2019.02.020

    [4]

    WU Zhengbin, LIU Huiqing, WANG Xue, et al. Emulsification and improved oil recovery with viscosity reducer during steam injection process for heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 348–355. doi: 10.1016/j.jiec.2017.12.033

    [5] 陈宁宁,宋立新,郑云重,等. 新型聚合油溶性稠油降粘剂的合成及性能研究[J]. 化学试剂,2017,39(2):134–136.

    CHEN Ningning, SONG Lixin, ZHENG Yunchong, et al. Synthetic and properties research of a novel viscosity reducer of oil-soluble polymers[J]. Journal of Chemical Reagents, 2017, 39(2): 134–136.

    [6] 杨兆臣,鲁雪梅,代纯川,等. 树枝型油溶性稠油降粘剂的研制[J]. 应用化工,2015,44(10):1909–1912.

    YANG Zhaochen, LU Xuemei, DAI Chunchuan, et al. The study of dendritic oil-soluble viscosity reducer for heavy oil[J]. Applied Chemical Industry, 2015, 44(10): 1909–1912.

    [7] 王大威,张健,吕鑫,等. 双子表面活性剂对海上S油田稠油降粘性能评价[J]. 油气地质与采收率,2015,22(4):109–113. doi: 10.3969/j.issn.1009-9603.2015.04.020

    WANG Dawei, ZHANG Jian, LYU Xin, et al. Evaluation of Gemini surfactant for viscosity reduction of heavy oil in offshore S Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(4): 109–113. doi: 10.3969/j.issn.1009-9603.2015.04.020

    [8] 王大喜,杜永顺,陈秋芬. 全氟聚醚酰胺磺酸钠稠油降粘剂的合成和表面活性[J]. 石油学报(石油加工),2004,20(4):56–60. doi: 10.3969/j.issn.1001-8719.2004.04.010

    WANG Daxi, DU Yongshun, CHEN Qiufen. Synthesis and surface activity of perfluoropolyether-sulfonate viscosity reducer[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2004, 20(4): 56–60. doi: 10.3969/j.issn.1001-8719.2004.04.010

    [9] 杨服民,王惠敏,底国彬. HRV-2稠油降粘剂的研制与评价[J]. 石油钻采工艺,1996,18(3):93–96.

    YANG Fumin, WANG Huimin, DI Guobin. Development and evaluation of HRV-2 thinner for heavy crude oil[J]. Oil Drilling and Production Technology, 1996, 18(3): 93–96.

    [10] 薛建泉,刘均荣,高庆贤. 稠油井空心杆泵上掺稀油降粘举升工艺设计[J]. 石油钻探技术,2006,34(5):70–72. doi: 10.3969/j.issn.1001-0890.2006.05.020

    XUE Jianquan, LIU Junrong, GAO Qingxian. A Lifting technological design for viscosity break by mixing light hydrocarbon in hollow rod in heavy oil well[J]. Petroleum Drilling Techniques, 2006, 34(5): 70–72. doi: 10.3969/j.issn.1001-0890.2006.05.020

    [11] 吕柏林,马鹏,卢迎波,等. 风城浅层超稠油油藏原位催化改质降黏技术[J]. 石油钻采工艺,2023,45(5):632–637.

    LYU Bailin, MA Peng, LU Yingbo, et al. In-situ catalytic modification and viscosity reduction technology in shallow ultra-heavy oil reservoirs in Fengcheng[J]. Oil Drilling & Production Technology, 2023, 45(5): 632–637.

    [12] 杜安琪,毛金成,王鼎立,等. 中深层稠油化学降黏技术研究进展[J]. 天然气工业,2022,42(2):110–122. doi: 10.3787/j.issn.1000-0976.2022.02.012

    DU Anqi, MAO Jincheng, WANG Dingli, et al. Research progress in chemical viscosity reduction technologies used for medium and deep heavy oil[J]. Natural Gas Industry, 2022, 42(2): 110–122. doi: 10.3787/j.issn.1000-0976.2022.02.012

    [13] 魏超平,束青林,吴光焕,等. 敏感性普通稠油水驱油藏化学降黏实践[J]. 特种油气藏,2023,30(2):109–115. doi: 10.3969/j.issn.1006-6535.2023.02.015

    Wei Chaoping, Shu Qinglin, Wu Guanghuan, et al. Practice of chemical viscosity reduction in water flooding for sensitive conventional heavy oil reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 109–115. doi: 10.3969/j.issn.1006-6535.2023.02.015

    [14] 刘硕,柯文奇,杨猛,等. 稠油开采中新型井下混配器降黏携带特性研究[J]. 石油机械,2022,50(6):91–97.

    LIU Shuo, KE Wenqi, YANG Meng, et al. Viscosity reduction and carrying characteristics of a new downhole mixer in heavy oil recovery[J]. China Petroleum Machinery, 2022, 50(6): 91–97.

    [15] 周娜,姜东,杜玮暄,等. 稠油井过泵旋流混合降黏举升技术[J]. 石油钻探技术,2016,44(6):84–87.

    ZHOU Na, JIANG Dong, DU Weixuan, et al. Lifting technology by swirl pumping vortex-reducing viscosity for heavy oil production well[J]. Petroleum Drilling Techniques, 2016, 44(6): 84–87.

    [16] 赵帅,蒲万芬,MIKHAIL A V,等. 催化剂和环境温度对稠油燃烧的影响[J]. 西南石油大学学报(自然科学版),2023,45(4):164–173.

    ZHAO Shuai, PU Wanfen, MIKHAIL A V, et al. Effects of catalyst and environment temperature on heavy oil combustion[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 164–173.

    [17] 王春升,杨天宇,杨泽军,等. 海上稠油油田热采开发工程技术研究与应用[J]. 中国海上油气,2023,35(5):193–200.

    WANG Chunsheng, YANG Tianyu, YANG Zejun, et al. Engineering technologies study and application of offshore heavey oil thermal recovery[J]. China Offshore Oil and Gas, 2023, 35(5): 193–200.

    [18] 杨勇. 胜利油田稠油开发技术新进展及发展方向[J]. 油气地质与采收率,2021,28(6):1–11.

    YANG Yong. New progress and next development directions of heavy oil development technologies in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 1–11.

    [19] 王俊奇,张祖峰,李建馨,等. 稠油开采电加热设备节能技术[J]. 石油机械,2010,38(9):45–48.

    WANG Junqi, ZHANG Zufeng, LI Jianxin, et al. The energy-saving technology of the electric heater for heavy oil recovery[J]. China Petroleum Machinery, 2010, 38(9): 45–48.

    [20] 郝林,孙楠,王东,等. 泵上掺水工艺在孤东油田稠油油藏的应用[J]. 油气地质与采收率,2004,11(3):71–73. doi: 10.3969/j.issn.1009-9603.2004.03.026

    HAO Lin, SUN Nan, WANG Dong, et al. Application of water blending technology above pump in the heavy oil reservoir of Gudong Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(3): 71–73. doi: 10.3969/j.issn.1009-9603.2004.03.026

    [21] 徐立民,范玉斌,王建恩. 深层稠油开采配套技术在胜利油田的应用研究[J]. 石油天然气学报,2011,33(4):138–141. doi: 10.3969/j.issn.1000-9752.2011.04.033

    XU Limin, FAN Yubin, WANG Jian’en. Matching technique for deep heavy-oil production and its application[J]. Journal of Oil and Gas Technology, 2011, 33(4): 138–141. doi: 10.3969/j.issn.1000-9752.2011.04.033

    [22] 辛迎春. 纳米SiO2改性稠油高效破乳剂的研制及应用[J]. 石油钻探技术,2008,36(5):75–77. doi: 10.3969/j.issn.1001-0890.2008.05.020

    XIN Yingchun. Research and application of modofied Nano-sized silca demulsifier for heavy oil[J]. Petroleum Drilling Techniques, 2008, 36(5): 75–77. doi: 10.3969/j.issn.1001-0890.2008.05.020

    [23] 唐清. ZDT乳化降粘剂在超深井稠油开发中的应用[J]. 石油钻探技术,2008,36(2):74–76. doi: 10.3969/j.issn.1001-0890.2008.02.022

    Tang Qing. Application of ZDT in heavy oil recovery in ultra-deep well[J]. Petroleum Drilling Techniques, 2008, 36(2): 74–76. doi: 10.3969/j.issn.1001-0890.2008.02.022

    [24] 刘书杰,安志杰,于继飞,等. 海上稠油乳化降黏剂的研究及评价[J]. 断块油气田,2015,22(6):829–832.

    LIU Shujie, AN Zhijie,YU Jifei, et al. Research and performance evaluation of heavy oil viscosity reducer for offshore oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 829–832.

    [25] 张阳,安高峰,蒋琪,等. 稠油化学降黏剂研究进展与发展趋势[J]. 特种油气藏,2024,31(1):9−19.

    ZHANG Yang, AN Gaofeng, JIANG Qi, et al. Research progress and development trend of heavy oil chemical viscosity reducing agent[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 9−19.

    [26] 葛际江,李德胜,张贵才. 新型耐温稠油降黏剂的制备与评价[J]. 西南石油大学学报(自然科学版),2007,29(5):112−–115.

    GE Jijiang, LI Desheng, ZHANG Guicai. Preparation and evaluation of temperature resistance viscosity reducer for heavy oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2007, 29(5): 112−–115.

    [27] 李成见. 海上欠饱和稠油油田原油降黏方式探讨[J]. 中国海上油气,2004,16(6):408−411.

    LI Chengjian. The discussion of reducing crude oil viscosity methods for offshore undersaturated viscous oil field[J]. China Offshore Oil and Gas, 2004, 16(6): 408−411.

  • 期刊类型引用(5)

    1. 孔德政,罗姜民,肖冰清,姜翠苹,陈建国,李艳君. 基于反演技术的碎屑岩高精度三维观测系统研究. 非常规油气. 2024(06): 17-24 . 百度学术
    2. 谢关宝,李永杰,吴海燕,黎有炎. 近井眼洞穴型地层双侧向测井敏感因素分析. 石油钻探技术. 2020(01): 120-126 . 本站查看
    3. 张永健,汤子余,卢美月,吴承美. 基于曲线重构的复杂砂砾岩体岩性识别研究——以北16井区梧桐沟组为例. 西安石油大学学报(自然科学版). 2020(02): 20-25+34 . 百度学术
    4. 林香亮,袁瑞,孙玉秋,王超,陈长胜. 支持向量机的基本理论和研究进展. 长江大学学报(自科版). 2018(17): 48-53+6 . 百度学术
    5. 孔强夫,杨松. 塔河碎屑岩储层测井解释评价研究进展与挑战. 石油地质与工程. 2016(03): 81-83 . 百度学术

    其他类型引用(6)

图(4)  /  表(2)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  13
  • PDF下载量:  16
  • 被引次数: 11
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-04-19
  • 录用日期:  2024-11-05
  • 网络出版日期:  2024-11-07
  • 刊出日期:  2025-02-27

目录

    /

    返回文章
    返回