智能控压钻井关键技术研究进展与展望

Research Progress and Prospects of Key Technologies for Intelligent Managed Pressure Drilling

  • 摘要: 随着油气勘探开发快速向深层、深水、非常规等复杂难动用领域发展,涌、漏、塌、卡等井下风险显著增加,亟需研发自动化程度更高、且具有智能化操控能力的精细控压钻井技术与装备,加速由半自动化、自动化到智能化的发展进程,实现早期精准复杂工况预测,更快、更准地控制并消除钻井风险。在调研国内外控压钻井技术与装备的智能化发展现状的基础上,阐述了智能控压在智能控制、数据采集与处理等装备方面,以及井下复杂深度学习识别方法、智能决策分析软件等关键技术的研究进展,试验初步验证了其显著的技术优势,但仍有待现场充分验证与完善。建议进一步加速控压钻井技术与智能技术的跨界融合,建立支撑复杂油气高效勘探开发的智能控压钻井技术体系,助力我国油气工程技术高水平自立自强。

     

    Abstract: With the gradual development of oil and gas exploration towards complex and difficult-to-use fields such as deep formation, deep water, and unconventional areas, the underground risks such as “surge, leakage, collapse, and sticking” have significantly increased. It is urgent to further develop precise managed pressure drilling (MPD) technology and equipment with higher automation and intelligent control capabilities, accelerate the development from semi-automation, automation, to intelligence, achieve accurate and early prediction of complex working conditions, and control and eliminate drilling risks faster and more accurately. A detailed investigation on the intelligent development of MPD technology and equipment in China and abroad was conducted, and the research progress of intelligent pressure control in equipment such as intelligent control, data acquisition and processing, as well as key technologies including complex underground deep learning methods and intelligent decision-making analysis software was discussed. Preliminary experimental verification shows the technical advantages of intelligent MPD technology, but it still needs to be fully verified and improved on site. In the future, by accelerating the cross-border integration of MPD technology and intelligent technology, it is expected to establish an intelligent pressure control drilling technology system that supports efficient exploration and development of complex oil and gas and help China’s oil and gas engineering technology achieve high-level self-reliance and self-improvement.

     

/

返回文章
返回