基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法

Downhole WOB Prediction Method Based on CNN-Bi-LSTM Network Optimized by TDCSO

  • 摘要: 为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE 58−32井和FORGE 58−62井的2个公开数据集对建立的模型进行验证,并采用平均绝对误差、均方根误差、决定系数和均方误差等指标进行模型性能评估。研究结果表明,所提出TDCSO-CNN-Bi-LSTM模型平均绝对误差、均方误差和均方根误差等3个关键性能指标较好,其中决定系数大于0.980,明显优于现有的LSTM、GRU、CNN-LSTM、CNN-Bi-LSTM等方法。研究表明,所提出的TDCSO-CNN-Bi-LSTM模型在井底钻压预测方面具有出色的准确性,能够实现实时监测,并与自动钻进系统集成,实现对钻压的精准控制,不仅提高了钻井效率,还降低了钻井成本,对未来的钻井作业具有重要的实际应用价值。

     

    Abstract: In order to accurately predict downhole weight on bit (WOB), improve drilling efficiency, and reduce drilling cost, a hybrid model combining bidirectional long short-term memory network (Bi-LSTM) and convolutional neural network (CNN) was established. The model used the trigonometric function-driven particle swarm optimization (TDCSO) method for hyperparameter optimization, so as to improve the accuracy of WOB prediction. The public data sets of Well FORGE 58−32 and Well FORGE 58−62 in Utah were used to verify the established model, and the model performance was evaluated by the mean absolute error (MAE), root mean square error (RMSE), coefficient of determination, and mean square error (MSE). The results show that the proposed TDCSO-CNN-Bi-LSTM model achieves excellent results in three key indicators of MAE, MSE, and RMSE, and the coefficient of determination was higher than 0.98, which is significantly better than the existing methods such as LSTM, GRU, CNN-LSTM and CNN-Bi-LSTM, etc. The study shows that the proposed TDCSO-CNN-Bi-LSTM model has excellent accuracy in downhole WOB prediction and enables real-time monitoring. It can be integrated with an automated drilling system to achieve precise control of WOB. This not only improves drilling efficiency but also reduces drilling cost, which has important practical application value for future drilling operations.

     

/

返回文章
返回