马先林,刘朕之,湛杰,等. 基于物理信息神经网络的CO2羽流分布预测方法[J]. 石油钻探技术,2024,52(5):1-7. DOI: 10.11911/syztjs.2024090
引用本文: 马先林,刘朕之,湛杰,等. 基于物理信息神经网络的CO2羽流分布预测方法[J]. 石油钻探技术,2024,52(5):1-7. DOI: 10.11911/syztjs.2024090
MA Xianlin, LIU Zhenzhi, ZHAN Jie, et al. Predictive method of CO2 plume distribution based on physics-informed neural networks[J]. Petroleum Drilling Techniques, 2024, 52(5):1-7. DOI: 10.11911/syztjs.2024090
Citation: MA Xianlin, LIU Zhenzhi, ZHAN Jie, et al. Predictive method of CO2 plume distribution based on physics-informed neural networks[J]. Petroleum Drilling Techniques, 2024, 52(5):1-7. DOI: 10.11911/syztjs.2024090

基于物理信息神经网络的CO2羽流分布预测方法

Predictive method of CO2 plume distribution based on physics-informed neural networks

  • 摘要: 为了提高CO2地质封存的有效性和安全性,需要准确预测地层中CO2羽流的分布和迁移规律。为此,利用自动微分技术,将多相渗流偏微分方程约束嵌入模型的损失函数中,建立了多相渗流力学约束的CO2羽流分布深度神经网络预测模型,以确保模型预测结果既符合训练数据样本的分布规律,又严格遵守偏微分方程描述的流体渗流物理规律。为了验证模型的有效性,以枯竭油藏封存CO2的实际案例为研究对象,分别应用多层感知器和长短期记忆深度神经网络构建了2个物理信息深度神经网络(PINNs)模型。研究表明,与纯数据驱动模型的预测结果相比,基于PINNs的模型具有更高的预测精度。研究结果不仅为CO2地质封存项目的设计与实施提供了技术支撑,也为该技术的实际应用提供了理论依据。

     

    Abstract: To enhance the efficacy and safety of CO2 geological storage, accurate forecasting of CO2 plume distribution and migration within geological formations has become essential. Deep neural network models have been developed to predict CO2 plume distributions, with constraints imposed by multiphase flow mechanics. The models utilize automatic differentiation techniques to incorporate partial differential equation (PDE) constraints of multiphase flow into the loss function, ensuring that the model's predictions are consistent with both the observed distribution patterns and the fundamental physical laws governing fluid flow. To validate the model's effectiveness, two Physics-Informed Neural Networks (PINNs) were constructed using a Multi-Layer Perceptron (MLP) and a Long Short-Term Memory (LSTM) deep neural network, respectively. The models were applied to a practical case study involving CO2 storage in a depleted oil reservoir. Compared to purely data-driven models, the PINNs-based models demonstrated superior predictive accuracy. The findings of this research provide robust technical support for the design and implementation of CO2 geological storage projects, while also offering a strong theoretical foundation for the practical application of this technology.

     

/

返回文章
返回