盛茂,范龙昂,张帅,等. 数据-知识混合驱动的压裂球座坐封有效性智能诊断方法[J]. 石油钻探技术,2024,52(5):1-6. DOI: 10.11911/syztjs.2024085
引用本文: 盛茂,范龙昂,张帅,等. 数据-知识混合驱动的压裂球座坐封有效性智能诊断方法[J]. 石油钻探技术,2024,52(5):1-6. DOI: 10.11911/syztjs.2024085
SHENG Mao, FAN Longang, ZHANG Shuai, et al. Data-knowledge mixed-driven fracturing ball seat setting effectiveness intelligent diagnosis[J]. Petroleum Drilling Techniques, 2024, 52(5):1-6. DOI: 10.11911/syztjs.2024085
Citation: SHENG Mao, FAN Longang, ZHANG Shuai, et al. Data-knowledge mixed-driven fracturing ball seat setting effectiveness intelligent diagnosis[J]. Petroleum Drilling Techniques, 2024, 52(5):1-6. DOI: 10.11911/syztjs.2024085

数据-知识混合驱动的压裂球座坐封有效性智能诊断方法

Data-knowledge mixed-driven fracturing ball seat setting effectiveness intelligent diagnosis

  • 摘要: 水平井桥塞分段压裂时的桥塞球座坐封有效性实时诊断是其关键环节,若球座坐封失效,将无法正常进行后续作业,目前主要依靠人工观察井口压力变化特征,难以快速准确判识。为此,融合专家经验定性判识和坐封数据特征挖掘定量标注,滑动窗口数据切片形成5792组标签数据,优选井口压力-排量二维输入的长短期记忆神经网络,建立了压裂球座坐封有效性智能诊断模型,并采用欠采样平衡数据集方式提升模型预测精度。结果表明,坐封数据呈现显著的井口压力陡升—陡降—平缓上升的三阶段特征,若井口压力缺失某个阶段特征,则为坐封失效;井口压力斜率统计值分布范围较大,无法形成明确规则实现准确诊断,采用人工智能技术学习不同井口压力形态的有效/无效坐封数据特征,实现了每秒输出诊断结果,测试集准确率96.8%,验证集准确率84.3%。井口压力-排量双输入的长短期记忆神经网络相比井口压力单输入模型,准确率提高5.1百分点。研究结果为桥塞球座坐封有效性实时自动诊断提供了模型方法。

     

    Abstract: Horizontal well bridge plug stage fracturing is one of the main technologies for the efficient development of unconventional oil and gas. Among them, the real-time diagnosis of the effectiveness of the bridge plug ball seat setting seal is the key link, once the tea seat setting fails, it will not be able to follow up normally. At present, it mainly relies on manual observation of the characteristics of wellhead pressure changes, which is difficult to quickly and accurately identify. To this end, this paper integrates expert experience qualitative judgment and quantitative annotation of setting data feature mining, and slices the sliding window data to form 5792 sets of label data. A long short-term memory neural network with two-dimensional input of wellhead pressure-displacement is preferred. An intelligent diagnostic model for the effectiveness of fracturing tee setting was established, and the under sampling balance dataset was used to improve the prediction accuracy of the model. The results show that the setting data shows a significant three-stage characteristic of steep rise, steep drop and gentle rise of wellhead pressure, and if the wellhead pressure lacks a certain stage feature, it is invalid set. The statistical value of wellhead pressure slope has a large distribution range, and it is impossible to form clear rules to achieve accurate diagnosis. Artificial intelligence technology is used to learn the valid/invalid setting data characteristics of different wellhead pressure forms, and the diagnostic results are output per second, with an accuracy of 96.8% for the test set and 84.3% for the verification set. Compared with the long short-term memory neural network with the dual input of wellhead pressure and displacement, the accuracy is increased by 5.1 percentage points compared with the single input of wellhead pressure. The results of this study are expected to provide a model method for the real-time automatic diagnosis of the effectiveness of the bridge plug ball seat.

     

/

返回文章
返回