Architecture of Intelligent Early Warning System for Complex Drilling Risks Based on Digital Twin Technology
-
摘要:
为降低深部地层不确定地质条件诱发的钻井井下复杂风险,采用数字孪生技术,构建了基于物理模型与数据驱动模型融合的钻井复杂风险数字孪生智能预警体系。为满足随钻预警、降低风险等实际需求,提出了基于微服务的数据集成、孪生体智能感知、多模态融合预警、孪生体智能诊断等4项数字孪生预警系统支撑技术,建立了钻井数字孪生预警系统的整体架构,并详述了其功能及模型设计,涉及物理设备层、虚拟实体层、孪生体数据层、孪生体算法模型层及孪生体预警服务层5层交互系统,设计了钻前预演规避风险、钻中实时预警、钻后分析区块风险等3种区块钻井优化设计的应用场景,实现了对多源异构数据的数字化集成,传统物理模型与智能模型的多重融合,以及溢流、井漏、卡钻的预警与类型识别等功能,从而达到降低深部钻井作业风险、优快钻井的目的。研究结果表明,基于“模型+数据”的数字孪生预警架构具有提前识别钻井过程中的风险和快速诊断风险类型的潜力,为智能钻井风险预警提供了新的技术途径。
Abstract:To reduce the complex drilling risks induced by uncertain geological conditions in deep formations, the digital twin technology has been adopted to construct a digital twin intelligent risk early warning system for complex drilling risks based on the fusion of physical models and data-driven models. In order to meet the actual requirements of early warning while drilling and risk reduction, four supporting technologies of digital twin early warning system were proposed, including microservice-based data integration, intelligent perception of digital twins, multimodal fusion early warning, and intelligent diagnosis of digital twins. The overall architecture of the digital twin early warning system for drilling has been established, and its functions and model design were described in detail. The system involved a five-layer interaction system, including physical device layer, virtual entity layer, digital twin data layer, digital twin algorithm model layer, and digital twin early warning service layer. Three application scenarios have been designed, including pre-drilling risk avoidance rehearsal, real-time warning during drilling, and post-drilling analysis of block risk situations to optimize block drilling design. This system has achieved several functions, such as digital integration of multi-source heterogeneous data, multiple fusion of traditional physical models with intelligent models, warning and type identification of overflow, lost circulation, and pipe sticking, etc. Therefore, the risks associated with deep drilling operations have been reduced and drilling efficiency has been optimized. The study results indicate that the digital twin warning architecture based on “model + data” has the potential to identify drilling risks and diagnose risk types in advance during drilling, providing new technology approaches for intelligent drilling risk early warning.
-
Keywords:
- drilling /
- risks /
- intelligent early warning /
- architecture /
- digital twin
-
-
表 1 复杂风险预警参数表征规律
Table 1 Characterization laws of early warning parameters for complex risks
风险类型 实测参数表征规律 实时计算参数 实时预测参数 溢流 钻时变短悬重降低
总池液面逐渐升高
出口流量逐渐升高
立压逐渐降低然后升高
气测全烃逐渐升高实测立压小于计算立压
井底压力小于孔隙压力实测立压小于预测立压
高压地层识别井漏 总池液面逐渐降低
出口流量逐渐降低
立压逐渐降低实测立压小于计算立压
井底压力大于漏失压力实测立压小于预测立压
井漏曲线案例推理识别井塌卡钻 立压突然升高
扭矩逐渐或突然升高
钻时突然增大实测立压大于计算立压
实测扭矩大于计算扭矩实测立压大于预测立压
易塌地层识别压差卡钻 立压不变
扭矩逐渐升高
起钻悬重升高
下钻悬重降低实测起钻悬重大于计算起钻悬重
实测下钻悬重小于计算下钻悬重实测起钻悬重大于预测起钻悬重
实测下钻悬重小于预测下钻悬重 -
[1] 蒋希文. 钻井事故与复杂问题[M]. 2版. 北京:石油工业出版社,2006:1-9. JIANG Xiwen. Drilling accidents and complex problems[M]. 2nd ed. Beijing: Petroleum Industry Press, 2006: 1-9.
[2] 张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65. ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65.
[3] KANEKO T, INOUE T, NAKAGAWA Y, et al. Hybrid approach using physical insights and data science for stuck-pipe prediction[J]. SPE Journal, 2024, 29(2): 641–650. doi: 10.2118/218013-PA
[4] 胜亚楠. 基于工程参数变化趋势异常诊断的卡钻实时预警方法[J]. 钻探工程,2024,51(1):68–74. SHENG Yanan. Real-time early warning of pipe sticking based on abnormal diagnosis of engineering parameter change trend[J]. Drilling Engineering, 2024, 51(1): 68–74.
[5] 姜杰,霍宇翔,张颢曦,等. 基于数字孪生的智能钻探服务平台架构[J]. 煤田地质与勘探,2023,51(9):129–137. JIANG Jie, HUO Yuxiang, ZHANG Haoxi, et al. Architecture of intelligent service platform for drilling based on digital twin[J]. Coal Geology & Exploration, 2023, 51(9): 129–137.
[6] 苏晓眉,张涛,李玉飞,等. 基于K-Means聚类算法的沉砂卡钻预测方法研究[J]. 钻采工艺,2021,44(3):5–9. SU Xiaomei, ZHANG Tao, LI Yufei, et al. Research on the sticking prediction method based on K-Means clustering algorithm[J]. Drilling & Production Technology, 2021, 44(3): 5–9.
[7] 晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究[J]. 钻采工艺,2023,46(2):170–174. YAN Yan, DUAN Mubai, HUANG Hao. Research on drilling risk early warning technology based on trend line method[J]. Drilling & Production Technology, 2023, 46(2): 170–174.
[8] 王钰豪,郝家胜,张帆,等. 钻井溢流风险的自适应LSTM预警方法[J]. 控制理论与应用,2022,39(3):441–448. WANG Yuhao, HAO Jiasheng, ZHANG Fan, et al. Adaptive LSTM early warning method for kick detection in drilling[J]. Control Theory & Applications, 2022, 39(3): 441–448.
[9] 胡万俊,夏文鹤,李永杰,等. 气体钻井随钻安全风险智能识别方法[J]. 石油勘探与开发,2022,49(2):377–384. HU Wanjun, XIA Wenhe, LI Yongjie, et al. An intelligent identification method of safety risk while drilling in gas drilling[J]. Petroleum Exploration and Development, 2022, 49(2): 377–384.
[10] GRIEVES M. Digital twin: manufacturing excellence through virtual factory replication[R]. White Paper, 2014.
[11] HADJIDEMETRIOU L, STYLIANIDIS N, ENGLEZOS D, et al. A digital twin architecture for real-time and offline high granularity analysis in smart buildings[J]. Sustainable Cities and Society, 2023, 98: 104795. doi: 10.1016/j.scs.2023.104795
[12] AVANZINI G B, ERIKSSON K E. Quality assurance framework of digital twins for the oil and gas industry[R]. OMC 2021-157, 2021.
[13] YANG Chao, CAI Baoping, ZHANG Rui, et al. Cross-validation enhanced digital twin driven fault diagnosis methodology for minor faults of subsea production control system[J]. Mechanical Systems and Signal Processing, 2023, 204: 110813. doi: 10.1016/j.ymssp.2023.110813
[14] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1–18. TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1–18.
[15] 苏兴华,詹胜,胡刚. 石油钻井数字孪生架构设计[J]. 信息系统工程,2021(11):26–30. SU Xinghua, ZHAN Sheng, HU Gang. Design of digital twin architecture for oil drilling[J]. China CIO News, 2021(11): 26–30.
[16] 杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16. YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16.
[17] 陆剑锋,张浩,赵荣泳. 数字孪生技术与工程实践:模型+数据驱动的智能系统[M]. 北京:机械工业出版社,2022:219-226. LU Jianfeng, ZHANG Hao, ZHAO Rongyong. Digital twin technology and engineering practice: model+data-driven intelligent system[M]. Beijing: China Machine Press, 2022: 219-226.
[18] REGIS A, ARROYAVE-TOBON S, LINARES J M, et al. Physic-based vs data-based digital twins for bush bearing wear diagnostic[J]. Wear, 2023, 526/527: 204888. doi: 10.1016/j.wear.2023.204888
[19] 陶飞,马昕,胡天亮,等. 数字孪生标准体系[J]. 计算机集成制造系统,2019,25(10):2405–2418. TAO Fei, MA Xin, HU Tianliang, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405–2418.
[20] 朱硕,宋先知,李根生,等. 钻柱摩阻扭矩智能实时分析与卡钻趋势预测[J]. 石油钻采工艺,2021,43(4):428–435. ZHU Shuo, SONG Xianzhi, LI Gensheng, et al. Intelligent real-time drag and torque analysis and sticking trend prediction of drill string[J]. Oil Drilling & Production Technology, 2021, 43(4): 428–435.
[21] 李紫璇,张菲菲,祝钰明,等. 钻井模型与机器学习耦合的实时卡钻预警技术[J]. 石油机械,2022,50(4):15–21. LI Zixuan, ZHANG Feifei, ZHU Yuming, et al. Real-time pipe sticking early warning technology based on coupling of drilling model and machine learning[J]. China Petroleum Machinery, 2022, 50(4): 15–21.
[22] 尹虎,王海彪. 基于CBR的井漏复杂事故的智能预警方法研究[J]. 科技通报,2018,34(4):195–199. YIN Hu, WANG Haibiao. Intelligent research of complex loss circulation’ warning based on CBR[J]. Bulletin of Science and Technology, 2018, 34(4): 195–199.
-
期刊类型引用(8)
1. 薛洋. 单筒三井钻井技术在文昌油田的应用. 钻探工程. 2023(01): 33-38 . 百度学术
2. 刁斌斌,高德利,胡德高,刘尧文. 基于贡献率分析的井眼轨迹测量主要误差源辨识. 钻采工艺. 2021(01): 1-6 . 百度学术
3. 刘永辉,李然,朱宽亮. 密集丛式井磁干扰情况下防碰判断与控制方法. 钻采工艺. 2021(01): 43-47 . 百度学术
4. 杨玉豪,张万栋,王成龙,莫康荣,程利民,张雪菲. 南海高温高压气田密集丛式井表层?660.4 mm井段安全钻井技术. 天然气勘探与开发. 2021(02): 75-80 . 百度学术
5. 焦明,霍宏博,窦蓬,刘海龙,陈卓. 海洋随钻近钻头测斜工具研发和应用. 石化技术. 2020(06): 142-143 . 百度学术
6. 张强,杜小松,孔华,晁文学,李亚南. 川南页岩气平台井组浅层预增斜轨道优化技术. 西部探矿工程. 2018(01): 61-65 . 百度学术
7. 刘刚,李祎宸,张家林,刘闯,杨帆,穆文军,王锴. 多传感器下基于遗传算法的钻头与套管间距离研究. 振动与冲击. 2018(12): 9-16 . 百度学术
8. 赵少伟,徐东升,王菲菲,罗曼,李振坤,刘杰. 渤海油田丛式井网整体加密钻井防碰技术. 石油钻采工艺. 2018(S1): 112-114 . 百度学术
其他类型引用(0)